AD-A153 535  INFINITE DIMENSIONAL LINEAR SYSTENS WITH UNBOUNDED 11 .
CD NTROL AND OBSERYATIO.. (U) WISCONSIN UNIV HHDISON
HEMATICS RESEARCH CENTER D SALANON F
UNCLASSIFIED H“TSR -2794 DAAG29-80-C /G 12/1




I

rrFrEEEF

en

——
.
—
rr

r

rr

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS- 1963-A

.

Y ‘n

™Y

LSV SN

hea fl23
122

=t

et o
25 it e

A Saalehbe et ¢

B 4




S
m MRC Technical Summary Report #2794
F
¢ < INFINITE DIMENSIONAL LINEAR SYSTEMS T
i WITH UNBOUNDED CONTROL AND OBSERVATION: . e
Q A FUNCTIONAL ANALYTIC APPROACH T e
Dictmar Salamon .
o
Mathematics Research Center : |
University of Wisconsin—Madison _...._
y 610 Walnut Street S
Madison, Wisconsin 53705 T
R
February 198n R ..
(Received January 23, 1985) B
o
M\“ f“_E. COPY Approved for public release E'ECTE
Distribution unlimited MAYQ 1985 . e
1 4
. Sponsored by D
U. S. Army FResearch Office and National Science Foundation - L
P. O. Box 12211 Washington, DC 20550
kesearch Triangle Park
North Carolina 27799
i 5 il
Bo 4 +i0 i3




Fa i e St Jiate At St e e A S i e e e e e s p—
BOISTANSI N AP L s e L S S T rN -~ I

l\ﬂccégéion For
UNIVERSITY OF WISCONSIN - MADISON | NTIS  GRAgr
MATHEMATICS RESEARCH CENTER DTI¢ TAB

Unannounceq
INFINITE DIMENSIONAL LINEAR SYSTEMS WITH J

UNBOUNDED CONTROL AND OBSERVATION:
A FUNCTIONAL ANALYTIC APPROACH

Distrj
Dietmar Salamon —§§7~?bbUtion/ Codes
Avallability Codes
Technical Summary Report #2794 Avatl anajor

Specia]l

February 1985

ABSTRACT
~ The object of these notes is to develop a unifying framework for the
functional analytic representation of infinite dimensional linear systems with
unbounded input and output operators. On the basis of the general approach
new results are derived on the wellposedness of feedback systems and on the
linear quadratic control problem. The implications of the theory for large
classes of functional and partial differential equations are discussed in

detail. .
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SIGNIFICANCE AND EXPLANATION

For a large number of control and observation processes in physics and
engineering an adequate mathematical representation leads to infinite
dimensional systems with unbounded input and output operators. In partial ". '
differential equations this is the case if the control acts through the

boundary and if measurements can only be taken at a few points of the spatial

PV O SR

domain. Analogous phenomena occur in functional differential equations if ®

there are delays in the input and output variables.

The object of this paper is to develop a unifying framework for the
functional analytic representation of infinite dimensional systems with
unbounded input and output operators. On the basis of the general approach
new results are derived on the wellposedness of feedback systems and on the
linear quadratic control problem. The implications of the theory for large

classes of functional and partial differential equations are discussed in

detail.
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INFINITE DIMENSIONAL LINEAR SYSTEMS WITH UNBOUNDED CONTROL AND OBSERVATION:
A FUNCTIONAL ANALYTIC APPROACH

Dietmar Salamon
1. INTRODUCTION

For large classes of infinite dimensional control systems an adequate mathematical
representation leads to unbounded input and output operators. 1In partial differential
equations this is the case if the control acts through the boundary and if the measure-
ments can only be taken at a few points of the spatial domain. Analogous phenomena occur
in functional differential equations if there are delays in the input and output variables.

These notes present a unifying abstract framework for the study of infinite
dimensional linear systems which allows for unbounded control and observation. The main
emphasis has been to keep the theory in a simple and elegant form and still to cover most
of the known examples of well-posed, linear, time invariant infinite dimensional control
systems. The general approach is then used to derive new results on the wellposedness of
feedback systems and on the linear quadratic control problem. Furthermore, it is shown how
large classes of functional and partial differential equationa can be represented within
the abstract functional analytic framework.

The relevance of unbounded input and output operators both from a theoretical and from
a practical point of view has been recognized for a long time in the literature on the
mathematical theory of infinite dimensjonal control systems. Without attempting to give a
complete overview we mention the classical work by LIONS (28], LIONS~MAGENES {29] as well
as the early papers by FATTORINI (12}, LUKES-RUSSELL (30], RUSSELL (36}, (37]), (38] and the
more recent book by CURTAIN-PRITCHARD (6]. 1In recent years more attention has been paid to
the abstract representation of boundary control systems. In the context of partial
differential equations we refer to BALAKRISHNAN (2], WASHBURN (45], HO~RUSSELL (19],
LASIECKA-TRIGGIANI {24], and in the context of functional differential equations to

ICHIKAWA (20], DELFOUR (10], SALAMON [40), DELFOUR-KARRAKCHOU [11], PRITCHARD-SALAMON {34].

sponsored by the United States Army under Contract No. DAAG29-80-C-0041. This material is
based upon work supported by the National Science Foundation under Grant No. DMS~8210950,
Mod 1,




Despite these efforts there are certain classes of wellposed infinite dimensional
systems for which a satisfactory functional analytic representation has not yet been
developed. Among these there are the examples discussed in section 6 and section 7.3. The
main feature of these systems is that the input and output operators are in a sense more
unbounded than the operator which describes the dynamics of the free system. 1In
particular, the wave equation in section 7.3 has been one of the main motivating examples
for the development of our general approach.

This general approach is discussed in detail in section 2. The important new feature
of the abstract semigroup control system in section 2.1 is the representation of the output
and the introduction of the operator Tu. The development of this new structure has turned
out to be necessary in order to allow for enough unboundedness in the input and output
operators. If either the input or the output operator is strictly unbounded, an equivalent
representation of the infinite dimensional system is derived in section 2.2 and section 2.3
leading to the concepts of an "abstract boundary control system” and an "abstract point
observation process"”. These two concepts are dual to each other while the concept of an
"abstract semigroup control system” is self dual (section 3).  Based on the fundamental
theory of section 2 a new perturbation resgult is derived in section 4. Section S5 deals
with the linear quadratic control problem for the class of systems discussed in section 2
without further restrictions. In particular, the optimal control is characterized in terms
of the dual system and conditions are given under which the optimal control is
differentiable. Furthermore, it is shown that the optimal control satisfies an unbounded
feedback law and is related to a Riccati type equation. A very general class of functional
differential equations is discussed in section 6. In section 7 it is shown how both
parabolic and hyperbolic partial differential equations can be described within the

framework of section 2.
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2. THREE BASIC CONCEPTS

2.1 SEMIGROUP CONTROL SYSTEMS ey

An abstract semigroup control system (SCS) is described by the equation - ;';

-’ a4 a4

LA l‘)

(2.131) X(t) = Ax(t) + Bu(t), £ > 0, x(0) = x5

"

where u(t) € U 4is the input, W C H CV are Hilbert spaces with continuous, dense

injections and and A € L(W,H) N L(H,V), B e L(U,V;. ]

REMARK 2.1. If A : D(A) * H is a closed, densely defined operator on a Hilbert space
H, then W =D(A) ana V' = D(A") can be made into Hilbert spaces with the respective

graph normg. Identifying H with its dual we obtain WC HCV and vicrcw with

continuous, dense injections. Furthermore, A and A* can now be regarded as bounded
operators from W, or respectively V', into H. By duality, we obtain the extensions
*
Ael,w, A* e L(H,W). If A has a nonempty resolvent set, then W = {x e H|Ax € H)
and the bounded extension A € [(H,V) coincides with the adjoint of the unbounded
* L] » * .

restriction A : D((A )“) * v ., The same holds for A . Finally, we point out that
whenever W C H with a continuous, dense injection and A € L (W,H) has a nonempty

resolvent set, then the norm on W is equivalent to the graph norm of A.

The output of the free system (u(t) = 0) can be described by an operator C € [(W,Y)
if x(t) @ W for every t 2 0. In order to describe the output of the forced motions of
(2.1;1) let us assume that yI-A : W >~ H is boundedly invertible for some 1y € R. Then
every solution x(°¢) € C’[O,T;H] of (2.1;1) can be written in the form

1

(2.2) x(t) ~ (bI=A) T (ux(e) - Xx(t)) + (uI-a)" 'Bu(t) .

Hence x(t) £ W unless Bu(t) € H. Therefore the operator C alone is not enough to

describe the output of the forced motions. Another operator Tu e L(U,Y) 1is necded. Then

-3-
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as motivated by (2.2) we can define the output of (2.1;1) by
(2.1;2) y(t) = CUI-A) " T(ux(t) - x(£)) + T u(t)

whenever x(°*) € C'[O,T;H] satisfies (2.1;1). 1In order to make sure that the expression
(2.1;2) is independent of 4, we have to assume that the operator family Tu e [{u,Y),
ulﬂ 0(A), satisfies a certain compatibility condition. The following hypothesis

summarizes all the assumptions imposed on A, B, C and Tu.

(S0) The operator uI-A : W * H is boundedly invertible for some u € R, v o= D(A'),

(2.3) T, Ty = (-wic(ur-a)~Y(a1-a)" s

for all A,u # o(A).

At some places we need in addition that the input and output operator are strictly

unbounded (with respect to H) that is

(2.4) range B N H = {0}

(2.5) range C* N H = {0}

REMARKS 2.2

(i) The compatibility condition (2.3) guarantees that the expression (2.1;2) for the
output of the system is independent of .

(i1} The operator family Tu e [(U,Y) is analytic on <C\o(A) and has to be
understood as the transfer operator which determines the input/output relationship of (2.1)
in the frequency domain. It generalizes the expression C(uI-A)-1B which does not make
sense tf both B and C are strictly unbounded with respect to H.

(iii) If either range BC H or C extends to a bounded operator from H into Y,

-1
then Tu = C{uI-A) B + D for some D € [(U,Y). Therefore Tu includes the possibility

~4-
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of a direct input/ocutput relation.

The next hypothesis is related to the homogeneous equation (2.1;1) (u(t) = 0).

(st) The operator A : D(A) = W+ H 1is the infinitesimal generator of

a strongly continuous semigroup S(t) € L(H).

1f (S0) and (S1) are satisfied, then S(t) is also a strongly continuous semigroup on W
and V and the infinitesimal generator of sS(t) € L(V) is given by the extended operator
A : H+* V (Remark 2.1)., The next Lemma is a well known result in semigroup theory and

summarizes the consequences of hypothesis (S1) for the inhomogeneocus equation (2.1;1).

LEMMA 2.3

Let (80) and (S1) be satisfied, let x5 € H and u(*) e W1'2[0,T;U] be given and

define
(2.6) x(t) = 8(t)xg + [§ S(t-s)Buls)as, 0 St < T .

Then x(+) € C[0,m;H) N C'(0,T;v] and

(2.7 X(t) = Ax(t) + Bu(t) = 5(t)(Ax, + Bu(0)] + [ S(t-s)Bu(s)ds

for 0 < t ¢ T. If moreover u(*) € w?:2(0,7;U] and Axy + Bu(0) € H, then

x() e ¢'(o,msul.

Let (50) and (S1) be satisfied and let u(*) € w?'2(0,TjU] and xg € H satisfy
Axg + Bu(0) € H. Then we denote by x(t) = x(tsxg,u) the corresponding unique solution of
(2.171) which is given by (2.6) and by y(t) = y(t:xo,u) the associated output (2.1;2).
The next hypothesis weakens the assumptions of Lemma 2.3. The final two hypotheses are

related to the state/output and the input/output relationship of the SCS (2.1).
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(s2) {S1) is satisfied and there exists a ¢ > 0 such that the following

inequality holds for all u(+) € w' ?[0,7;U]

Ijg S(T-s)Bu(s)dsl, < clu(+)! .
L”(0,T;U]

(s3) (S1) is satisfied and there exists a ¢ > 0 such that the following

inequality holds for all x e W

Ics(«)xl < CllxlH .
L7 (0,T;Y)

(s4) (S1) is satisfied and there exists a ¢ > 0 such that the following

inequality holds for every u(*) e w?r2[0,T;U] with u(0) =0

fy(e;0,u)f < clu(* )1 2 .
L [OIT;Y] L [OIT;U]

DEFINITION 2.4

The SCS (3.1) is said to be well posed if (50-4) are satisfied. If the SCS (3.1) is

well posed and x, € H, u(*) € L2{0,T;U) are given, we define x(t) = x(tixg,u) by (2.6)

and y(t) = y(ti;xg,u) by continuous extension of the expression (2.1;2) using (s3) and

(S4). y(t) is said to be the weak output of the SCS (2.1).

By definition, the weak output y(t;xo,u) of the well posed SCS (2.1) has to satisfy
(2.1;2) only if ul(-*) € WZ’Z[O,T:H], u(0) = 0, x5 € W. It is not immediately obvious
that y(t) also satisfies (2.1;2) in general whenever x(-;xo,u) e w1'2[0,T;H]. we
establish this in the next Lemma along with some differentiability properties of the

solutions and outputs of (2.1).

LEMMA 2.5

2

Suppose that the sSCS (2.1) is well posed, let x, € H, u(*) e L 0,T;U] be given and




A o

[
E
{
let x(t) = x(t;xg,u), y{t) = y(tixg,u) be defined as above. Then the following j
statements hold. - p
[

(1) x{eix,,u) € clo,T:;d4] N w1'2[0,T;V) gatisfies (2.1;1) for almost every : .

t e (o,T]). e e

(ii) 1f x(';xo,u) e w1'2[0,T;H] then (2.1;2) holds for almost every t € [0,T].

(iii) If u(+) € W'+2[0,T;u] and Axy + Bu(0) e H, then x(+ixyu) € C'(0,TsH],

y(';xo,u) e w1'2{0,T;Y] satisfy ;(t;xo,u) = x(t;Ax0+Bu(0),u) and §(t;x0,u)

y(t;Ax0+Bu(0),G) for (almost) every t € [0,T].

PROOF: The continuity of x:t) in H follows from standard estimates using (S2) (see

[40, Theorem 1.3.4)). Moreover, (2.1;1) follows from the fact that the equation
t
x(tixg,u) = x5 + jo [Ax(s3%y,u) + Bu(s)]ds

holds for 0 < t < T, u(*) € W'»2(0,T;U], Axy + Bu(0) € H (Lemma 2.3) and that both sides
of this equation depend continuously on x; € H and u(*) e L2[0,T;U). This proves
statement (i).

In order to establish statement (ii) we have to make use of the calculations leading
to equation (3.4) in the proof of Theorem 3.3 below. Let us fix v(¢) € w2'2[0,T;YI,
v(T) = 0, let =z(s) = z(s;0,v) be given by (3.3) and define w(s) =

L ] * - . *
B (ul-A) 1(u2(8)+z(5)) + TuV(s) for 0 < 8 < T. then it follows from (3.4) that the

equation

T ¢ ( at = <z(0 /T cwts),uls)>

0 vit),yltixg,u>ydt <z(0),xg>y + 0 v s),u(s)>,ds
holds for Xg € W, u{+) € wz'z[O,T;U], u(0) = 0, and hence, by continuous dependence for
all x5 € H, u{*) € L2[O,T;U). If moreover x(';xo,u) e w"z[O,T;H], we may define y{t)

by (2.1;1) and use (3.4) once again to obtain

Py
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T N
Jo <vie)yteixg,w) - ylr)> de =0 .

since the set of all wv(*) € w2¢2(0,T;¥] with v(T) = 0 is dense in L2{0,T;Y] we
‘onclude that vy = ;-
In order to establish statement (iii) let us chocse u(*) e W3’2[0,T;U] with

\xg + Bu(0) € H and A[Axg+Bu(0)] + BA(0) € H. Then it follows from Lemma 2.3 that
v .
x(tixg,u) = xg + jo x(s;Axg+Bu(0),u)ds, 0 < £ < T ,

ind that x(';AxO*Bu(O),u) e C1[0,T;H]. Hence we can apply statement (ii) to both

r(tixg,u) and y(t;Axo+Bu(0),6) and obtain with the help of the above equation that

yltixg,u) = y(0;xg,u) + ]; y(s;Ax0+BU(0),u)dS: o<t

lerce statement (iii) follows from the fact that both sides in these two equations depend
:ontinuously on xg € H, Axp+Bu(0) € H and u e w' 2[0,T;U]l. Here we need the fact that
“= {(x,u,z) € Hx U x H[Ax+Bu = 2z} contains {(x,u,z) € F|Az € H + range B} as a dense
mbspace. In fact, given (x,u,z) € F choose wy, € W converging to wux-z € H and
lefine x = (uI-A)-I(wk+Bu), zy = Axp + Bu. Then (xk,u,zk) converges to (x,u,z) in

and Az, + ubBu € H. ]

f the SCS (2.1) is well posed, then we introduce for notational convenience the
wperators 8(T) e L(L2(0,7;U]:H), C(T) e L (H,L2(0,T;Y], T(T) e L(L?[0,T;Ul,L2(0,T;¥]) such

hat

x(Tixg,u) = S{TIx, + B{T)u e H ,

2

y(‘;xo,u) = (T)xg + T(T)u € L°[O,T;Y]

or %, € H and u(e) € L2[

" 0,T;U]. For t € T we also introduce the left shift operator

am? the restriction operator by from LZIO,T;U] into Lz(O,t:U] by defining

-f-

1
APV o .

ta e o




(ii) Suppose that the operators A, Q, G satisfy (P0O) and let V, A € L, vy,

e L(u,v) be defined by (2.29), (2.30). Then the domain W =0D(A) of A in H is [

ven by (2.31). Furthermore, there exist unique operators C € Lw,Y), Tu e L(u,Y),

g o(a), satisfying (2.23) and (2.24). These operators also satisfy (S0) and C has a

* . ..' T
'nse range and is strictly unbounded. Finally, X is given by (2.21) and the norm on AN

. ®
is equivalent to the one defined by (2.22).
(i1i) Suppose that the spaces W, H, V, X and the operators A, B, C, Tu, A, R, G
itisfy (s0), (PO), (2.21), (2.23), (2.24), (2.29-32). Then every solution x(+) € C‘[O,T;H]
the SCS (2.1) satisfies the POP (2.27) and vice versa. Furthermore, G is injective ®
id strictly unbounded if and only if B is injective and strictly unbounded.
JMARK 2.14
If the SCS (2.1) and the POP (2.27) are related as above, then the map wu : Vx Y+ X, [
-1
£ o(n), defined by ¢ (x,¥) = (uI-A) (uI~A) 'x + Qy is an isomorphism with the
‘operties
-1 -1 ®
X = wu(x,C(uI-A) x), Ax = wu(Ax,uC(uI-A) xX), x€ H , -
Qy = ¢,(0,y), Gu = ¢,(Bu,Tu), y €Y, uel . -
[
.is suggests an alternative procedure for transforming the SCS (2.1) into a BCS of the o
m (2.27).
The next hypothesis is related to the homogeneous equation (2.27). y
® - 4
1) For every x5 € H with Axo € H + range 1 there exists a
unique solution x(*) = x(';xo,O) e C1(0,T;H] of the initial value

problem x - Ax € range £, x(0) = x5, In C[0,T;H] this solution depends

continuously on Xy € H.

~22-




and is defined by Ax ~ Ax € range . By Remark 2.1, the adjoint of this unbounded

operator A : D(A) * H coincides with the adjoint of the bounded operator A € L(H,V) and

has the domain
* *

(2.32) pa"y = v = {xex |8 x =0} .

In order to construct C € [(W,Y), let x € W be given and choose y = Cx € Y such
that Ax - Ax = Qy. Then C is well defined, linear and satisfies (2.23).
Furthermore, C is bounded, since & has a bounded inverse on its range.

In order to contruct Tu e |(U,Y), let ue U be given and note that, by (3.30),
1'(111-/\)()11-}\)-13\1 = Bu = "Gu. Hence there exists a y = Tuu € Y such that

Q = Gu - (uI-A)(uI-A)_1Bu. Since N is injective and has a closed range, this operator

Tu is well defined, bounded, linear and satisfies (2.24).

The next Proposition summarizes the above transformations and is the dual result of

Proposition 2.8. The proof will be omitted.

PROPOSITION 2.13

(i) Let the operators A, B, C, Tu satisfy (S0), suppose that C has a dense

range and is strictly unbounded and let X be defined by (2.21), (2.22). Then_there

exist unigue operators A € L(H,Xx), @ e L(Y,X), G € L(U,X) satisfying (2.23) and (2.24).

These operators also satisfy (P0), (2.29-32). Furthermore, for 4 £ o(A), the operator

c, = cur-a)" ' s H e ¥

extends to a bounded linear operator from X into Y and

-1
. A= ~A cfl=1,CG=T .
(2.33) Cu uc(ur-a) -, u u u

-21=-

e e e [ .
, .

b,

e tede e S N T e

Ry

o
b d A A A b

.o




Again we might have considered the POP (2.27) as our basic model where H _ X are
iilbert spaces with a continuous dense injection and the operators A € L(H,x), 2 el (y,x),

s € L(u,X) satisfy the following hypothesis.

PO) s is injective and has a closed range, range 2 N H = {0},
there exists a W € R such that X = range (uI-A) + range

and ux - Ax € range R implies x = 0 for x € H.

it some places we also need that the input operator G € L(U,X) is strictly unbounded

‘with respect to H) that is

'2.28) range G N (H + range ) = {0} .

In order to transform any POP (2.27) which satisfies hypothesis (P0) into a SCS of the

‘orm (2.1), we introduce the space

12.29) V = X/range

ind denote by % : X + V the canonical projection. Since range N H = {0} we can

identify every x € H with %x = x + range 1 € V. This makes H into a dense subspace

>f V with a continuous injection. Now let us define the operators A € [(H,V), Be L(u,v)

Y

'2.30) A=1mA , B

nG .

"hen hypothesis (P0O) implies that uI-A @ L(H,V) is one-to~one and onto for some 4 € R.
fence A is a closed operator on V with a nonempty resolvent set. So is its restriction

0 H which has the domain

2.31 W := D(A) = {x € H|Ax € H + range 1}

-20-
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L 4
equivalent to z € X", 8z = 0. Hence Ax - ly € H implies that for all =z e D(a")
* *
A'z,x> = <A z,x> - <R z,y> = <z,Ax-Ry>

and therefore x € D(A) = W. Furthermore, it follows from (2.23) that Q(y-Cx) =

Qy - Ax + Ax € H. Since Q. is onto and ker a* is dense in H (Proposition 2.8), we

obtain that € 4is injective and H N range ? = {0}, Hence y = Cx and Ax = Ax - Qy.
If Ax + Gu - Qy € H, then it follows from (2.24) that

1

1Bu) - Q(y-Tuu) = Ax + Gu - Qy - u(uI-A) 'Bu e H

A(x-(pI-A)"

and hence

1 1

x = (uI-A)” 'Bu € W, C{x~(pI-A) 'Bu) = y =~ T -

This implies (2.25), x € H, (uI-A)x - Bu € H, and therefore Ax + Bu € H. =}

The previous Lemma shows that every solution x(+) € ¢'10,TiH] of the scs (3.1) also

satisfies the abstract point observation process (POP)

(2.27) X(£) + Qy(t) = Ax(t) + Gu(t), € > 0, x(0) = x|
and vice versa. 1In (2.27) y € Y has to be understood as the output and u € U as the
input of the system. The interpretation of (2.27) is that the initial value problem

X = Ax, x(0) = xg, does not have a solution in general and has to be replaced by the
differential inclusion x - Ax € range 9. It is important to note that 9 is boundedly
invertible on its range so that the output of the system can be described by the action of

an inverse of % on x - Ax.

-19=
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(2.23) Ax = ax + Q0x , xe@w .

Finally, we define G € L(U,X) by

1

(2.24) Gu = (BI-A)(uI-A) 'Bu + QTuu

for ue€ Uy and p £ 6{A). Then some straightforward manipulations involving (2.3) and

(2.23) show that the operator G defined by (2.24) is independent of u.

LEMMA 2.12

Suppose that the spaces W, H, V, X and the operators A, B, C, Tu, A, Q, G satisfy

(s0), (2.21), (2.23), (2.24) and that C has a dense range and is strictly unbounded. Let

x€eH ueU yeY be given., Then Ax + Gu - iy € H if and only if Ax + Bu € H and

(2.25) y = C(uI-A)" ! (ux-Ax~Bu) + T .

Furthermore, if Ax + Gu - Qy € H, then

(2.26) Ax + Bu + Qy = Ax + Gu .

PROOF: Suppose that Ax + Bu € H and y € Y is given by (2.25). Then

1

Qy = QC(u1-A)~ ' (ux~Ax-Bu) + ﬂTuu

(A-u1) (uI-A)" ' (ux-Ax-Bu) + AT u + ux - Ax - Bu

]

Ax + Gu = Ax ~ Bu .

In order to prove the converse implication, let us first consider the case u = 0 and

*
note that z € D(A ) if and only if A'z en (Remark 2.1) which, by definition of &, is

-18-
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{Lemma 2.3). By (2.19), this implies x(°*) € C[0,T;2) and, by (2.10), i(t) = Ax(t),

Tx(t) = u(t). Hence, by (B2), there exists a constant c¢ > 0 such that

3 S(T-8)Bv(s)dsl, = IX(T)I, < chv(+)] .
L” (0,TiU]

This proves (S2).

The equivalence of (S3) and (B3) is trivial. So is the equivalence of (S4) and (B4). O

Note that the above proof for the eguivalence of (B2) and (S2) has already been

presented in CURTAIN-SALAMON (7]. We have included the proof for the purpose of

completeness.

2.3 POINT OBSERVATION PROCESSES

In this section we consider the case that the output operator C e L(W,Y) of the SCS
(2.1) has a dense range and is strictly unbounded, that is (2.5) holds. In this situation
there is another way of rawriting the SCS (2.1) and it can be done by means of a procedure
which is dual to the one described in the previous section.

We introduce the space

* * *
(2.21) x" = {x eH|a x e H + range C )

and make it into a Hilbert space by defining

* *
(2.22) ixi2, = 1x12 + ay12 ¢ 1a"xac"y1?
" H Y H

-
where y € Y is the unique vector with A'x + Cy€eH, Identifying H with its dual, we

obtain x' C HCX with continucus, dense injections. Furthermore, there exist unique

- * »
operators A e [(H,X), @ e L{Y,X) satisfying A'x =Ax-CRx for x &X and hence

17 e
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jo y(t;0,u)bide < c ]0 Ta(t)d at

where y(tj0,u) = Kx(t;0,u) with x{*;0,u) e C(0,T;2) N C'[0,7;H)

as in Corollary 2.9.

DEFINITION 2.10

The BCS (2.12) is said to be well posed if the hypotheses (B0-4) are satisfied.

PROPOSITION 2.11

Suppose that the spaces W, H, V, 2 and the operators A, B, C, Tu, A, T, K satisfx

(s0), (BO), (2.8), (2.10), (2.11), (2.15), (2.16). Then the SCS (2.1) satisfies hypothesis

(sk) if and only if the BCS (2.12) satisfies hypothesis (Bk) for k = 1,2,3,4.

PROOF: The equivalence of (S1) and (B1) follows from PHILLIPS ({33]. Furthermore, it
follows from Lemma 2.5 and Proposition 2.8 that (S2) implies (B2). In fact, given x; € 2
and u(*) € w'v2[0,T;H] with Fxo = u(0), we get Axy + Bu(0) = Ax; € H and hence the
function x(*) = x(-;xo,u) ] C'[O,T;H] defined by (2.6) satisfies (2.7) (Lemma 2.5).
Therefore x(°*) is the unique solution of the BCS (2.12). Since BAx(t) + Bu(t) = x(t) e H
it follows from (2.19) that x(+) € C[0,T:;2). The continuous dependence follows easily

from (2.6) and (2.7) together with (2.19).

Conversely, suppose that (B2) is satisfied, let v(+) e w1'2[0,T;U] and define
x(t) = [} s(t-s)Buls)ds, u(s) = [g v(miar .
Then x(°*) € C1I0,T;H] and

Ax(t) + Bu(t) = x(t) = Jg S(t-s)Bv(s)ds € H .

-16-




PR Y T Y TN W T Y Y v — v v -

TETETAC N

1
(2.20) Ax =pux , Tx =0 . Lo i

The next hypnthesis is related to the homogeneous equation (2.12). E:_‘

{(B1) For every x; € 2 with Fxo = 0 there exists a unique

solution x(0) = x(';xo,O) e Clo,T;2) N C1[O,T;H] of

.
x = Ax, Tx = 0, x(0) = x5, depending countinuously on x5 € Z.

The implications of this hypothesis for the inhomogeneous equation are summarized in the
Corollary below which follows immediately from Proposition 2.8 together with Lemma 2.3 and R .

a result in PHILLIPS [33]. j

COROLLARY 2.9

Let (BO) and (B1) be satisfied. Then for every x5 € Z and every ul(*) e W2'2[0,T;U]

with Ix) = u(0) there exists a unigue solution x(-) = x(+ixg,u) € C[0,7;2] N Cl10,7:R)

of (2.12). This solution depends continuously on x5 € 2 and a(e) e w' 20,705,

The next hypothesis weakens the assumptions of Corollary 2.9. The final two

hypotheses are related to the state/output and the input/output relationship of the BCS

(2.12).
(B2)  For all xg € 2, u(*) € w'*2[0,T;U] with Txj = u(0) there
exists a unique solution x(°¢) = x('yxo,u) e C(o,T;2] N C’[O,T;H] of
the BCS (2.12) depending continuoualy on x; € Z and uls) e LZIO,T;U].
(B3} (Bt) is satisfied and there exists a constant ¢ > 0 such that the
following inequality holds for every xg € Z with Fxo = 0.
T 2 2
. < .
fo IRx(tix,,0) b dt € cfx ¥y
(B4) (B1) is satisfied and there exists a constant ¢ > 0 such that the

following inequality holds for every u(*) € wz'Z[O,T;U] with u(0) = 0




(1i) Now let A, I', K be given and let W, V, A, B, C, Tu be defined as above.
Then B 1is injective and strictly unbounded since Bu € H and Ix = u imply that
Ax = Ax - Blx € H and hence x € W= ker ' (Remark 2.1). Now we show that Z 4is given
by (2.8). If x € Z then Ax = 4x - BIx € H + range B. Conversely, if Ax + Bu @€ H for
some u€U and if [z =u, z€ 2, then A(x-z) = Ax + Bu - Az 8 H and hence x-z € W
which implies that x € 2Z.

In order to establish the equivalence of the norms on 2, let x € Z be given and

chose z € Z such that Tz =Tx and 1zi_ < coll‘xlU (Remark 2.7). Then for

2
u e R\o(a)
-1
Ixi, € Izl + 1(uI-A)" (uI-8) (x-2)1,
(2.19) < c°[1+|(uI-A)-](uI-A)I]Il‘xIU + l(uI-A)-1I[|u|lxIH + 1]

< c[ IxIH + ll"xlu + lelH] .

(iii) For the proof of statement (iii) it is convenient to identify W with
- » » * "
Z /range T 8o that 1 : 2 + W is the canonical projection. Moreover, note that
*
range I' N H = {0} since ker I is dense in H. This allows us to identity x @ H with
* *
1 x=x + range I' e w",
Now suppose that K 1is strictly unbounded and has a dense range. Then C'y =
. . * * d
' Kye ' H implies that Ky € H + range T and hence y = 0. Therefore C is strictly

unbounded and has a dense range. Conversely suppose that C 1is strictly unbounded and has

* . % L
a dense range. Then K'y € H + range T implies that C'y =1Kye1H and hence y = 0.

Therefore K is strictly unbounded and has a dense range. O
=~ A
Suppose that the spaces W, H, V, Z and the operators A, B, C, Tu' A, T, K satisfy -:fl, 'ff'
(s0), (BO), (2.8), (2.10), (2.11), (2.15), (2.16). Then equation (2.17) shows that LT
(uI-A)-1B : U* Z is the solution operator of the abstract elliptic problem N j

=14~
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(2.18) X(ui-a)" '8 = T, -

(ii) Suppose that the operators A, T, x satisfy (BO) and let W, A € L(w,H),

Cc e L(W,¥Y) be defined by (2.15), (2.16). Furthermore, let V be the dual space of

v - D(A'). Then A & L(H,V) and there exist unique operators B e L(u,v), Tu e L(v,Y),

u £ o(a), satisfying (2.10) and (2.11). These operators alsoc satisfy (S0) and B is

injective and strictly unbounded. Finally, 2 4is given by (2.8) and the norm on 2 i

equivalent to the one defined by (2.9).

(iii) Suppose that the spaces W, H, V, 2 and the operators A, B, C, Tu‘ A, T, X

satisfy (s0), (BO) (2.8), (2.10), (2.11), (2.15), (2.16). Then every solution

x(°) € C‘[O,T,H] of the SCS (2.1) satisfies the BCS (2.12) and vice versa. Furthermore,

K 4is strictly unbounded and has a dense range if and only if C is strictly unbounded and

has a denge range.

PROOF:

(1) The existence of the operators A, T, x satisfying (2.10), (2.11) has been
established above. Now (2.15) follows from the fact that, by definition of T, I'x =0 (if
and only if Ax € H which is equivalent to x € W (Remark 2.1). Furthermore, (2.16)

follows from (2.15), (2.10) and (2.11). The equation

A(uI-A) 'Bu + Bu = u(uI—A)"au €H

for u € U shows that range(uI-A)-1B C z and that (2.17) holds. (2.18) is a

consequence of (2.17) and (2.11). sSince B is strictly unbounded, we get

's follows from the identity

wn range(ul-A)"B = {0}, and Z =W ® tanqe(uI-A)'

x = (uI-A)" " (ux-8x) + (p1-a) " 'Brx

for x € Z. Pinally, it follows from (2.17) that T is onto.

-3
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In order to transform any BCS (2.12) which satisfies (B0O) into a SCS of the form

(2.1), we introduce the space

(2.15) w={xez|lx =0}

and denote by 1 : W+ Z the canonical injection. Then W CH with a continuous dense

injection. The operators A € L(W,H) and C € [(W,Y) are given by

(2.16) A=M , C Kt .
Now define V" = D(A') as in Remark 2.1 so that H C V with a continuous dense injection
and A extends to a bounded operator from H into V. Then it follows from Remark 2.1
that Ax = Ax if and only if ['x = 0 for every x € Z. This allows us to define the
operators B € L(U,V) and '1‘u e L(u,Y) for u M o(a) as follows.
Given u € U, choose x € Z such that TI'x = u and define
Bu = Ax - Ax, T,u = Kx - C(uI-A) (ux-8x) .

Then these operators are well defined, they are obviously linear and, by Remark 2.7, they

are bounded. Furthermore, by definition, these operators satisfy (2.10) and (2.11).

PROPOSITION 2.8

(i) Let the operators A, B, C, Tu satisfy (S0), suppose that B is injective and

strictly unbounded and let Z be defined by (2.8), (2.9). Then there exist unique operators

Ael(z,H), Tey((z,u), K €1(Z,Y) satigfying (2.10) and (2.11). These operators also

~1
satisfy (BO), (2.15), (2.16). Furthermore, Z = W ® range (uI-A) B for u # o(A) and

1

1 B, T(ur-a)"m =1 ,

(2.17) AuI-m) "B = pur-a) !

-12-
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and vice versa. The interpretation of (2.12) is that the initial value problem X = 4x,
x(0) = x5, does not give rise to unique solutjons unless the "boundary condition” TI'x = u
is also satisfied. Since equation (2.12) only makes sense if x(t) is at least absolutely
continuous in H, one might understand the solutions of the SCS (2.1) as "weak solutions”
of the BC3 (2.12).

Note that an analogous version of the above construction has been developed by HO-
RUSSELL {19] for a special class of systems with a scalar input.

In CURTAIN-SALAMON [7] the BCS (2.12) has been considered as a basic model. In fact,
many systems can be formulated as a BCS of the form (2.12) in a direct way (see section 6
and section 7.3). From this point of view we have to agsume that 2Z C H are Hilbert
spaces with a continuous dense injection and the operators A € L(Z,H), T el (2Z,U),

K € L(2,Y) satisfy the following hypothesis.

(BO) I' is onto, ker I' is dense in H, the restriction of A
to ker ' is a closed operator on H whose spectrum does not

contain the real axis.

At some places we also need that the output operator K € [ (Z,Y) is strictly unbounded

(with respect to H) that is

(2.13) range XK' N (H + range ™ = {0} .

Here we have identified H with its dual so that H C z* with a continuous dense

injection.
REMARK 2.7
since [ 1is onto there exists a constant ¢y > 0 such that for every u € U there

exists an x € 2 with

(2.14) Px = u, Wxl




2.2 BOUNDARY CONTROL SYSTEMS
In this section we rewrite the SCS (2.1) into a more convenient form provided that the
input operator B € [ (U,V) 1is injective and strictly unbounded that is (2.4) holds. For

this purpose we introduce the space

(2.8) z = {x € H|Ax € H + range B}
and make it into a Hilbert space by defining
2 2 2 2
. 12 = + + +
(2.9) Ix z lle lulU iAx l!ulH
where u € U is the unique input vector with Ax + Bu € H. Then Z C H with a continuous
denge injection. Furthermore we introduce the operators A e L(Z,H), T e [(2,U) by
defining Ax = Ax + Bu, 'x » u for x € 2 and u €@ U with Ax + Bu € H. This means that
(2.10) Ax = aAx + BIx , xe 2 .
Finally, we define K € [ (Z,Y) by
(2.11) Kx = C(uI-A) "' (ux-8x) + T,
for x € 2 and u # O0(A). Some straightforward manipulations using (2.3) show that the
operator K defined by (2.11) is independent of 4.

As a consequence of these constructions we obtain that every solution x(+) € C‘[O,T;H]

of the SCS (2.1) is also a solution of the abstract boundary control system (BCS)

x(t) = Ax(t) , t2>0 ,

(2.12) x(t) = u(t) , x(0) = X3 .

y(t) = Kx(t) ,




(ctu)(s) = u(s+T~t), (ptu)(s) = u(s)

*
tor wu(+) € L2(0,T;Ul. Then o, : t2(0,t;u] + L2[0,7;U)

L]
Dt is the extension operator. They are given by

- 0 , 0 <8
(dtu)(s) =

u(s+t-T) , T-t <

- u(s) , 0<s

(otu)(s) = 0 , t<s

PR A AP A T s A 0 e SSa S0a lhre S5 A ~—

, 0< 8¢ ¢t ,

is the right shift operator and

< T-t ,
s <T ,

<t ,
<7T ,

for wu(°) e Lz[o,t;U]. The analogous operators on Lz[o,T;Y] will also be denoted by

*
Gpr Pyr Op

linearity and time invariance of the SCS {(2.1). They can

them without proof.

LEMMA 2.6
L - * *
(1) otct = id, ptot = id, aT-toT-t + ptpt = jda ,
* »
PeOp-g = 0 OpoePy =0 -

(11) B(T) = s(T-t)B(t)p, + B(T-t)0,_, .
C(1) = oy C(T-t)S(e) + piC(t)
L * »
T(T) = pyT(t)p, + 05 C(T-t)B(t)p, + o T(T-t)o,_
(114) B(2)o, = B(t), B(T)py = S(T-t)BIL),
0y C(T) = C(T-t)S(E), P.CIT) = C(t)

* * *
T(T)o, = o.T(t), p.T(T) = T(tle, dT-tT(T)pt =

L]
¢ Py The following relations between the various operators express the

be easily checked and we atate

t

(T-t)B(t) .

It seems to be an interesting open guestion whether all operator families B(t), T(t), C(t)

with the properties of Lemma 2.6 can be represented in the above way in terms of operators

B, C, Tu which satisfy the hypotheses (S2-4).

-9-




The implications of this hypothesis for the inhomogeneocus equation are summarized in the
Corollary below which follows immediately from Proposition 2.13 together with Lemma 2.3 and (

a result in PHILLTPS {33]. .

COROLLARY 2.15 -
Let (PO) and (P1) be satisfied. Then for every x, € H and every u(*) e wz'z[O,T;U] |

with Axo + Gu(0) € H + range 8 there exists a unique solution pair

yi*) = y(-;xo,u) e Cl0,T1Y], x(°) = x(.,xo,u) e C‘[O,T;H] of (2.27). This solution pair

depends continuously on x, € H, a(e) e w1'2[0,T;U] and the H~component of Ax. + Gu(0).
0 (1]

|
Furthermore, x(';xo,u) depends in ([0,T;H) continuously on xp € H and
1,2
u(*) e w°[0,T1U].
The following hypothesis weakens the assumptions of Corollary 2.15 and the final two '.
hypotheses are related to the state/output and input/output behavior of the POP (2.27).
(P2) For every xy € H and every u(*) e w'2[0,TU] with
Axo + Gu(D) € H + range 1 there exists a unique solution pair -
o
y{*) = ylesx4,u) € Clo,T:¥]l, x(+) = x(*5x5,u) € ct1o, i8] of (2.27).
This solution pair depends continuously on xg € H, u(+) € w1'2[0,T;H] 1{
and on the H-component of Axo + Gu(0). -
b . L
= (P3) For every xp € H there exists a unique solution pair
3 x(+) = x(*3%,,0) e €0, T;H] N w'r2(0,;X] and y(+) = y(+;x;,0) € L?(0,TsH]
. of (2.27) with u(*) = 0. This solution pair depends continuocusly on
fo wen
0
. @
8
i (P4) (P1) is satisfied and there exists a constant ¢ > 0 such that for
L,
R every u(+) e W2'2[0,TyU] with u(0) = 0 the following inequality holds
f T 2 T 2 .
] I fy(t10,u)lidt < ¢ I Tu(t)iiae .
-23- ;
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DEFINITION 2.16

The POP (2.27) is said to be well posed if (P0-4) are satisfied. LTI

PROPOSITION 2.17

Suppose that the spaces W, H, V, X and the oge;ators A, B, C, 'ru, A, R, G satisfy

(s0), (PO), (2.21), (2.23), (2.24), (2.29-32). Then the following statements holds. L J

(i) The SCS (2.1) satisfies hypothesis (Sk) if and only if the POP (2.27) satisfies

hypothesis (Pk) for k = 1,2,3,4.

(ii) The POP (2.27) is well posed if and only if for every Xg € H and every

u(*) e L2[O,T;U] there exists a unique solution pair .
x(+) = x(*ixg,u) € Cl0,T:H) N w'r2(0,T:X] and y(+) = y(*5xg.u) € L?(0,T3¥] of (2.27)
depending continuously on x5 € H and u(-) € L2[0,T;U].
- ...»
PROOF: The proof of statement (i) is analogous to that of Propogition 2.11 and will be
omitted. .
In order to prove statement (ii) let us first assume that the POP (2.27) is well posed
and choose x, € H, u(*) € W1'2[0,T;U] with l\x0 + Gu(0) € H + range Q. Then it follows B...,._.,.__
from statement (i) that the SCS (2.1) is well posed and we can denote by
x(',xo,u) e C1[0,T;H] and y(',xo,u) e w1’2[0,T;Y] the corresponding solution and output
of (2.1). Furthermore, it follows from Lemma 2.12 that T
e
x(tixg,u) = x5 = f'g [l\x(s;xo,u) + Gu(s) - ﬂy(S;xo,u)]ds
for 0 ¢ t € T. Since both sides of this equation depend continuously on Xy € H and -
ul(*) e L?[0,T;U] we obtain that x{*ix,,u) € Clo,T;H] N w'2[0,7;X] and N °
y(*ixg,u) e LZ[O,T;Y] satisfy (2.27) for every x5 € H and every u(+) L2[0,'I‘;U]. The
unigueness follows from the fact that every solution x(°) e C[0,T;H] N w"z[o,'r;xl of
(2.27) also satisfies (2.1;1) in V = X/range 1. This fact also proves the converse Y
implication via the well posedness of the SCS (2.1). 0
-24- ,




[
Note that in the case of the SCS (2.1) and of the BCS (2.12) we have to assume that
: x(':xo,u) e C’[O,'rn-l] in order to give a meaning to the expression y(tixg,u) in a strong o
-
s sense. The previous proposition shows that for the POP (2.27) both x(tixy,u) and
& y(tixg,u) have a well defined meaning as strong solutions for arbitrary x5 € H and f? .
ut+) e t2{0,1:01. el
®
The relation between the various spaces and operators can be summarized by the o
following diagram in which the vertical sequences are exact.
Y o
\L Q
X
A w G L

Z
r - '
U R
[
Finally, we point out that the above results can be combined to transform the POP ._;.2?_
(2.27) directly into a BCS of the form (2.12) and vice versa. These transformations are ‘ii:
®

summarized in the Proposition below. Its proof follows from the earlier results of this -

section and will be omitted.

-25-




PROPOSITION 2.18

(i) Let the operators A, @, G satisfy (P0O), suppose that G is injective and

strictly unbounded and define 2 C H by

(2.34) 2 = {x € H|Ax € H + range G + range Q}

2 2 2 2
= 1 1A -
(2.35) leZ lxlH + lu U + 1Ax+Gu leH

for x € z2, ueuU,yeyY with Ax + Gu - ly € H. Then Z is a Hilbert space with a

continuous, dense injection into H and there exist unique operators 4 € L(Z,H),

I'e L(Z,U], X € [(Z,Y) such that

(2.36) Ax + QKx = Ax + GI'x , x €@ 2 .

These operators also satisfy (BO) and X has a dense range and is strictly unbounded.

Furthermore X" CH is given by

* * *
(2.37) x" = {x e B|6 x € H + range K + range I' }

and the norm on X" igs equivalent to the one defined by

* * *
(2.38) 102, = 1x12 + a1yt + 18 xek"y-r'mn?
x' H Y u

* » * -
for x €X ,y€Y,ueu with A x+Ky-TueH.

(ii) Let the operators A, I', K satisfy (B0O), suppose that K has a dense range

and is strictly unbounded and let x* be defined by (2.37), (2.38). Then x" is a

Hilbert space with a continuous, dense injection into H and there exist unique operators

Ae (Hx), Qe (¥,X), Ge (U,X) satisfying (2.36). These operators also satisfy (P0)

and G is injective and strictly unbounded. Furthermore, 2 C H is given by (2.34) and
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the norm on Z is equivalent to the one defined by (2.35).

(iii) If the spaces 2 C H C X and the operators, A, 1, G, 8, I, X satisfy (PO},

{B0), (2.34), (2.36), (2.37), then every solution x(°¢) € C‘[O,T)H] of the POP (2.27) also

satisfies the BCS (2.12) and vice versa. Furthermore, hypothesis (Pk) is equivalent to

hypothesis (Bk) for k = 1,2,3,4.
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3. DUALITY

Consider the SCS

x(t) = Ax(t) + Bu(t) , x(0) = X,

(3.1)

y(£) = cuI-n) ™ ux(e)=k(e)) + Tu(t), £ >0

where W C HC_ V with continuous, dense injections and the operators A € L(w,H) N L(H,V),

B € [(Uu/V), ce L(W,Y), Tu e L(U,Y) satisfy hypothesis (S0). Identifying the spaces H, U, Y
with their respective duals we obtain v CHC W with continuous, dense injections and

the adjoint operators A" e L(V*,H) n L(H,W'), " e L(V.,U), c'e L(Y,W'), T; e L(y,u)

also satisfy hypothesis (S0). For some purposes it is convenient to write the dual system

in the time reverse form

. * -
z(g) = - A z(s8) - C v(sg), z(T) = L

(3.2)

wis) = B (uI-A )" '(uz(s)+z(s)) + Tv(s), s<T ,

where v € Y is the input and w € U is the output. For every 2z, € H and every

v @ 12[0,T;Y] the solution of (3.2) is given by

* T » «
(3.3) z(sizy,v) = 8 (T-s)zy + |_ S (t-s)C'v(s)ds, s < T .

lemma 2.3 shows that z(+;z,,v) € C'(0,T;H] if wv(+) e w22[0,7;%] and A'zy + c'viT) e n
* * .
and that in this case 2(5:21,V) = z(s;-A z,~C v(T),v). whenever

z{*) = z(‘:z,,v) e w1'2[0,T;HJ we denote by w(-;z1,v) the corresponding output of

[
(3.2)., We consider the following hypotheses for the sCS (3.2). ‘1
* *
(s0™) The operator MI-A : V > H 1is boundedly invertible for some N
* * * LS | L S U
ueR, w=Dp(a), and Tu-'rx = (A=y)B (BI-A ) "(M-A ) 'C for - R

all A,u € ao(A). L
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* L] *
(s1") The operator A : D{(A ) =V =+ H is the infinitesimal generator
* ——
of a strongly continuous semigroup S (t) € L(H). o
e
IR
(s2™) (s1") is satisfied and there exists a constant c¢ > 0 sguch that -3

the following inequality holds for all x e v*

* &
IB S (T~*)x} 2 ‘€ clxl .
L [olT'UJ 4

(s3") (51") is satisfied and there exists a constant ¢ > 0 such that - r

the following inequality holds for all v(*) e w''2[0,1;Y)

T * *
1y s (t)xc viryaen, < clv(e)! .
L (0,7T:Y]

(s4") (51') is satisfied and there exists a ¢ > 0 such that the

following inequality holds for all v(+) e W2’2[0,T1Y] with v(7) =0

tw(*;0,v)1 2 < clv(*)l 2 .
L™ (0,T;U] L°[0,T:Y)

DEFINITION 3.1

The SCS (3.2) is said to be well posed if (80-4‘) are satisfied. If the SCs (3.2) is

well posed and z, € H, v(*) € L2[O,TxY] are given, we define =z(s) = z(s;zy,v) by (3.3)

and w(s) = wis;jz,,v) by continuous extension of the expression in (3.2) using (52') and

(s4'). w(s) is said to be the weak output of the SCS (3.2).

Although the next result is strictly analogous to Lemma 2.5 {t is worth being stated

explicitly since it formulates the basic properties of the solutions of the SCS (3.2) in

the time reverse situation and will be needed in section 5.
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LEMMA 3.2

Suppose that the SCS (3.2) is well posed, let =z, € H, v(+) € Lz[O,T:Y] be given and

let z(s) = z(s;z,,v) and w(s) = w(s;z,,v) be defined as above. Then the following

statements holds.

(i) z(*:z,,v) e Cto,T:H] N w1'2[o,T;w'] satisfies (3.2) for almost every

s e [(0,T].

(ii) 1If z(';z1,v) e w1'2[0,T;H] then w(s:z,,v) is given by (3.2) for almost

every s € {0,T].
(iii) If v() e w'r2{0,7;¥] and A'zy + c"v(T) @ H, then =z(+;z,,v) € ‘'(0,TsH],

. * * . .
w(';z1,v) € w1'2[0,T;U] satisfy z(s;z1,v) = z(8;-A z_~C v(T),v) and w(s;z1,v) =

1

* * .
w(s;-A z1-C v{T),v) for (almost) every s € [0,T].

Our basic duality Theorem is the following.

THEOREM 3.3

(i) The SCS (3.1) satisfies hypothesis (Sk) if and only if the dual SCS (3.2)

satisfies hypothesis (Sk') for k =0,1,2,3,4.

(ii) Suppose that the SCS (3.1) satisfies hypothesis (S0), that u(+) € LZ[O,T;U],

x(+) e w'*2[0,m:H], y(+) e L2(0,T;¥] satisfy (3.1) and that v(+) e L?[0,T;Y],

z(*) e w'*2{0,T;H), w(*) € L?[0,T;U] satisfy (3.2). Then

<z(t),x(t)>H - <z(s),x(s)>H

(3.4)

it t

Js <w(T),u(T)> dv - ]s wlt),ylt)>dr, 0 ¢ sC LT

PROOF: The equivalence of (S0) and (SO.) follows from Remark 2.1, the equivalence of (S1)
and (S1') is a well known result in semigroup theory and the equivalence of (S2) and (52')

as well as (S3) and (53') has been established in [40). The equivalence of (S4) and (54.)

follows from statement (ii) together with the fact that the functions wu(*) € w2'2[0,T;U]
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with u(0) = 0 are dense in LZ[O,T;U]. Now let the assumptions of statement {ii) be

satisfied. Then

<z(t),x(t)>, = <z(s),x(8)>y

t d t .
Is <2(T),x(1)> dr + js <z(1),x(1)> dr

J8 <20, uz-n 7T ux (1)-k (1) +BuCT) )> gt
N <(uz—n')"(uz(z)+2(r)+c'v(r)),i(x)>Hdr

'é(r),u(r)>udr + [ <@ ,umi-a Tk ar

12 " (ur-a")"
+ I:‘ <v(t),c(uI-A)°1§(t)>Ym + ]'; <u(ux-A')'1z(t),i(r)>Hdr
= J& " ur-a") T uz ez (n)) sutt)> ar
- [ win,cur-n T st -x(0)>

t _ it
!s <w(T),u(1)> dr fs w(t),yl1)> a1 . D

Defining the operators B(T), C(T), T(T), 9., P, as in section 2.1, we obtain the

following result as a straightforward consequence of Theorem 3.3.

COROLLARY 3.4

If the SCS (3.2) is well posed, then the following equations hold for every z, e H

ana_every v(*) € Lz[O,T;Y]

*
z(812,,v) = s'(’r-s)z1 +C (T-s)OT_sV. 0<sg<T ,

wiriz,,v) = B (Thzy + T (miv .
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Let us now consider the BCS

x(t) = Ax(t) , x(0) = x;
(3.5) Tx(t) = w(t) , ¢t >0 ,

yl(t) = Xx(t)

where 2 C H with a continuocus dense injection and the operators A e L(Z,H), I' e L(zZ,U],
K € [(z,Y) satisfy hypothesis (BO). Then H C Z' with a continuous, dense injection and
* * * * * * R )
the dual operators & e [(H,z), I e ((U,2 ), K € [(Y,2 ) satisfy hypothesis (P0)
- *
with X=2,A=8,2=T, ¢ =x". as the dual system of the BCS (3.5) we consider the

POP
. * * *
(3.6) 2(s) - T w(s) = - &4 z(s) - K vis), s €T, z(T) = 2 ,
where v € Y 1is the input and w € U 1is the output. If the BCS (3.5) is related to the
SCS (3.1) as in section 2.2, then the POP (3.6) is related to the SCS (3.2) as in section

2.3. This means that the following diagram commutes.

section 2.2

SCS (3.1) E— BCS (3.5)
duality duality
N7 section 2.3 NV
sCs (3.2) — > POP (3.6)

Making use of tnis fact we obtain the following duality relationship between the systems

{3.%) and (3.6) which can also be proved directly in a straightforward way.




THEOREM 3.5

(i) The BCcs (3.5) satisfies hypothesis (Bk) if and only if the POP (3.6) satisfies

L ] *
hypothesis (Pk) with X =2", A=48", 2 =0, G =K' for k = 0,1,4. Furthermors, (B2) is

equivalent to (P3) and (B3) is equivalent to (P2).

(ii) Suppose that the BCS (3.5) satisfies (BO), that wu{*) € LZ[O,T;U].

x(+) e L2(0,1;2) Nw's2{0,1;H] and y(+) e L?(0,T/¥] satisfy (3.5) and that

v(e) e 12(0,1:¥), 2(*) € w''2(0,T;H] and w(-) e L?[0,T;U} satisfy (3.6). Then (3.4)

holds.
Finally, we point out that the dual system of the POP

(3.7) X(t) + Qy(t) = Ax(t) + Guit), t > 0, x(D) = Xy

is the BCS

. *
z(8) =- Az(s) , z(P) = z,
(3.8) Q'z(8) = v(s) , s<T ,

*
w(g) = G z(8} y

where v € Y is the input and w € U is the output.
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4. A PERTURBATION RESULT

In the finite dimensional feedback problem
X = AXx + Bu , u=Fx ,

(A+BF)tx0 satisfies the integral equation

the closed loop input up(t) = Fe
ug(t) = FeAtx, + F [E eAlt-8)py (g)as
F 0 0 F ¢

In finite dimensions, this equation always has a unique solution. In infinite dimensions
this nice property can break down due to the unboundedness in both operators B and F.
An example for this is provided by the wave equation in section 7.3. Therefore we need a
condition to guarantee that the operator I - T(t) 1is boundedly invertible. Note that in
our case the output operator plays the role of F.

From now on we will assume throughout this section that the SCS (2.1) is well posed,

that the operators B(t), C(t), T(t) are defined as in section 2.1 and that U = Y.

LEMMA 4.1

Let T >0 be fixed. Then I - T(T) is invertible if and only if I - T(t) is

invertible for every t > O.

PROOF: We fix 0 < t < T and prove that I - T(T) is invertible if and only if
I - T(t) 1is invertible. At various places we use Lemma 2.6 without stating it explicitly.

Let us first assume that I - T(T) is invertible. Then u - T(t)u =10, ue Lz[o,t;U],

» * * *
implies that o u = OtT(t)u = T(T)otu and hence O, u = 0 which means that u = 0. Given

— — — -
Yy € L2[0,t:Ul, there exists a u € LZ[O,T;U] with u - T(T)u = o, y- This implies

3 u = pT_tT(T); = T(T-t)oT_ W and hence 0. Therefore u = o u satisfies

T=t t Pp.g¥ = t

» — - »* E L ]

Jtu = u and thus Oty =0ou - T(T)Otu = Gt (u = T(t)u) which implies y = u - T(t)u.
_34-
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Conversely suppose that I - T(t) is invertible and w.l.o.g. 0 <t ¢ T < 2¢t. Then

- 4

it follows from what we just proved that I - T(T-t) is invertible. Assume first that ®
4
u e L2{0,T/U] sarvisfies u = T(T)u. Then Ppu = ptT(T)u = T(t)ptu and hence p u = 0 N

- - ™ ’
which implies u = 0, 0O,  u. We conclude that O, 0,  u = OT-tT(T-t)GT-tu and thus

-

- 2
oT-tcT-tu 0. Secondly, let y € L“[0,T;U] be

o - =
r-t® ™ T(T t)°T~t“ which means that u

given and choose uy € tho,t;u], u, € L2[0,T't:U] such that ug = T(tlug = P Y and
uy = T(T=t)uy = o,y + C(T-t)B(t)ug. Then it follows from Lemma 2.6 that
- L]
=g + - =y.
u et %1 ptuo satisfies u - T(T)u = y C
THEOREM 4.2

Suppose that the SCS (2.1) is well posed, that U = Y and that I - T(t) e Lo, t;u)

is boundedly invertible for t > 0. Then the bounded linear operators

(4.1) Splt) = S(t) + B(t) (I-T(e)]7'C(t) e L(E), £ 20

define a strongly continuous semigroup. Moreover,

(4.2) Spltixg = S(t)xg + [& S(t-8)Bup(sixg)ds

for x5 € H and t ?» 0 where the closed loop input uF(')xo) e L2[0,T;U] is_defined by

. = - -1
uF( 1x0) (I-T(T)) ™' C(T)xge

PROOF: If follows from Lemma 2.6 (iii) that

1

p (1-T(m 1™ em) = 1-T(e)1 o 0Ty = (1-TCe) ) ote)

for 0 € t € T. This proves equation (4.2) and the strong continuity of S (t) in H

(Lemma 2.5). It follows also from Lemma 2.6 that ¢,  T(T) = T(T-t)o, , + CeT-£)Blt)o,

t

and hence
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o
) : -1 -1
g [1-7(T)] = [1-T(T-t)] o
T-t T-t
-1 -1 g
+ [1-T(T-t)] "C{T-t)R{t) [1-T(t)] Py
r 3 €t & T. Putting things together, we obtain again using Lemma 2.6 that ‘
®
S.(T) = s(T) + 8(1) (1-T(m)} 70T
= s(T-t) (s(e)+BleIp, 1-T(T)) 7 'C(D)
L
. -1 L]
+ Bir-e)o_ 11-T(m 17 C(m) )
-1
= - 3(T~ -T(T- g
S(T-t)S (t) + B ) [I-T(T-t)] T-tC(T)
9
+ B(T-t) [I-T{T-t)) 7 1C(T-£) B ) (I-T(£)17C(e) - o
®
= [S(T-t) + B(T-£) [1-T(T-t) )7 'C(T-t) IS (t) o
=5 (T-t)s_(t) . .
F F .
- R
®
9
is proves the Theorem. ] S o
. . N
The next theorem is concerned with the properties if the infinitesimal generator Ag N 3
. [
the feedback semigroup Sg(t), 4
5
EOKEM 1.3 . )
AL . .
Let the assumptions »f Theorem 4.2 be satisfied and let Wp C H denote the linear
. o
bspace of all xg € H for which there exists a uy € U and a ¢ £ o(A) such that 1
. -1 o S .
.3 Axq + Buy € H, uy - Clul=A) " (ux =Ax =-Bu,) + TuufJ . 4 1
®
1
en the followiny statements holds.
-Jh’
o
1
’ “«




(1i1) If x € W(t) then (x,P(t)x) € W and

) (F(t)x,K(t)x) = F(x,P(t)x)

0 & t €T, Furthermore the following equation holds for 0 < t € T and x,z € W(t)

) <z,P(t)x> = JI <F(o(t,t)z,P(1)0(T,t)2), F(o(r,t)x,P(r)@(r,t)x)>UdeT

Theorem 5.1 and Lemma 5.4. ]

An essential feature of the above Theorem is that the feedback operator

€ L(W(t),U) is unbounded with respect to H and will in general have no bounded

ision. Furthermore, it is important to note that F(t)x € U depends not only on
but also on x itself (see equation (5.19)). This change to the product space

IxH is the key feature in equation (5.20) which may be considered as a generalized

on of the integral Riccati equation (compare CURTAIN-PRITCHARD [6]), GIBSON (17],

'HARD-SALAMON (34]). If the input and output operators B and ¢ are bounded with
:«ct to H then F(t) is bounded as well and furthermore Ww(t) = W in that case. The
ir follows from equation (5.5) in connection with the fact that the operator

T TT)  is boundedly invertible on w"z[O,T:U) if B and C are bounded.
‘tunately we were not able to prove in general that W(t) is dense in H and leave

as a conjecture. Another interesting open question is whether there is a way to
'rentiate equation (5.20) in order to derive some kind of a differential Riccati

.ion for the operator P(t). A question which we have not addressed is the uniqueness
.he solution operator P(t) of (5.20). Finally we point out that a cost functional

an (arbitrary nonnegative) additional weighting term on the final state x{(T) can be

ed in an analogous way as presented in this section.
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®
¥x 3% + UAx_+Bu 2. Ic.y 02 for x5 € W(t) where u, =: F(t)xy € U and e Y are :
0H 0 0H 1 d ] o~} 0 Y1 .
chosen such that (5.9} holds with z4 = 0 and T replaced by T-t (see Remark 5.3 (i)). . o !
CN
Then F(t) € L(W(t),u), A+BF(t) € L(W(t),H) and we define K(t} e [(W(t),Y) by Ty
ST
SRR
(5.14) K(t) = C(uI-A)" ' (uI-A~BF(t)) + T F(t) SO
- A |
®
R
for 0 € t < T. Finally, we define ¢&(t,8) for 0 € g € t < T by ]
-
4
(5.15) #ct,s) = [1 0] S(t-syT-a) [I] . 3
° ®

THEOREM 5.5

Suppose that the SCS (5.2) is well posed and let x, € H be given. Then the

following statements hold.

(1) xp € W(0) Af and only if ul(*ix,) e w'*2[0,TsU1, y(*ixy) € w'*2(0,miv],

x(+1xg) € C'(0,T1H], z(*1xy) € C'(0,TyH). If x, € W(0) then x(t) € W(t) for 0 < t<T

and
(5.16) ultixg) = F(t)x(tixg), yltixg) = K{tix(tixg) . .
(ii) The operator ®(t,s) € [(H) N L(wW(s),W(t)) satisfies &(t,T)®(1,s) = &(t,s), ‘. - 4
®(8,8) = 1 and
RO
(5.17) x(tyixg) = O(t,s)x(a,xc) IO i
®
{
for 0 ¢ s<T<t<T. If x e Ws) then &(+,s)x e C'[s,T;H] and
(5.18) d4/at d(t,s)x = (A*BF(t)]8(t,s)x = O(t,s) (A+BF(s)]x . o 1
1
-~49- )
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JF: It follows from (5.5) that

x(t) = S(t)xy - B(c)[1+1’(t)r(t)1"(T'(t)c(t)xo+c'(t)z<cﬁ .

2(t) = s7(r-t)zy + T (1) (47 (o007 T (1-e)) T (T-0)x(0) T (T-08 " (T-0)2y)

0 € £t <T. This proves (5.11). 1In order to prove statement (ii) let us first assume
t x(*) e C'to,m;u], z(+) ec'(0o,TsH], u(+) e w'*2(0,T;U], y(+) e w'2(0,T;¥]. Then it
lows from Lemma 2.5 and Lemma 3.2 that (5.9) holds with ug = ul0), yq = y(T).

versely, assume that (xg,z4) € W(T), (ug,yq) = F(T)(x5,24) and define

(t) + /% u(err,ax_+Bu_,-a"z ~c"y.)d
u uy o Ul8iT,Ax +Bu , z, y,)ds

(t) JT y(siT.Ax +Bu_,-A"z —c'y )4
Y Yo 7l ¥U8IT,Ax ¥R, TR 2,70 v, )ds

0 <t €T. Then Lemma 2.5 shows that y(':xo,u) e W"Z[O,T;Y] satisfies

y(*ix_,u) = y(*;Ax_+Bu_,u)
0 0

0
* *
= . + -
y( ;Axo Buo, A z1-C y1)

y{*) .

thermore, it follows from (5.9;2) that y(0) = y(0;x5,u) and hence y(*) = y(°;x0,u).
logous arguments using Lemma 3.2 and (5.9:1) show that u(*) = - w(':z1,y)- Hence
) and y(*) satisfy (5.4) and we conclude that u(°*) = u(-;T,xo,z1) and

) = y{(*;T,x ,z1). This proves the statements (ii) and (iii). Finally, statement (iv)

0

an operator theoretic reformulation of statement (iii). w

In order to apply the previous Lemma to the linear quadratic control problem we

2
roduce the Hilbert space W(t) = {xo e Hl(xo,o) € W(T-t)} with the norm Ixolw(t) =
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(5.1072) olt) = B(e)lI+T () T(e)1 " 18% ey,

(5.1033) R(t) =~ B() (I+TT ()T ()" 1 (vciyy

for 0 €t <.

LEMMA 5.4

Suppose that the SCS (5.2) is well posed, let (xg,24) € H be given and let u(t) =

ult1T,xg,2q), y(t) = y(t3T,x9,2q), x(t) = x{t1T,xg,24), z(t) = 2(t17T,x4,29) be defined as

above. Then the following statements hold.

(1) For every t € [0,T]

(5.11) (x(£),2(t)) = S(L1T)(xg,2q4) .

(1i) (xg.z4) € W(T) if and only if x(-) € C'[O,T;H], z(+) € C’[O,T;H],

u(*) e w20, Tnl, y(*) e wh2io,my).

(114) If (xg.zq) € W(T) then x(t), z(t), ult), y(t) are the weak solutions of

(5.2) and (5.3) with (x4,z4) xeplaced by (A+BF(T))(xo,z1)- Moreover, (x(s),z(t)) e W(t~s)

for 0 <8<t <T and
(5.12) (u(s),y(t)) € F(e-8)(x(s),z(t)) .

(4v) If (xg.zq) € W(T), then S(*iT)(xy,z,) € CLO,TaW] N CT(0,T4H] and

d/dt S(t:T)(xo.z1) = [A+8FJS(t:T)(x0,z1)

= S{tsT) (A+BF(T}) (x4,2,)

0 <t <T,

,rn
o]
"
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T * *
+ fo u(t;T,Ax +Bug,-A z -C y,)dt

Yo 0 Yo
(5.9; 1)
* * -9 * * Tt
= B (uIl-A ) (uz1-A z1-c y1) uy1 '
N + * 'y
Y, Jo y(t.T,Axo Bu,,-A z,~C y, )dt
(5.9;2)
p— -— -1 - -
= C{uI-A) (ux0 Axo Buo) + Tuuo .

REMARKS 5.3

(i) Note that equations (5.9) are independent of 4 & 0(A). Furthermore, the next
Lemma shows that up € U and y, € Y are uniquely determined by (5.9) if (xg,z4) € W(T)
is given. Finally, uy and y, depend continuously on x, € H, Axy + Bug € H, z4 € H,

A'z, + C'y1 € H. This allows us to make W(T) into a Hilbert space by defining

2

= 1x 1% 4+ dax +Bu 12 + 4z 12 + 12"z +c"y 1
0 Y0 H 1H 11

2
1x_,z )1
(xgez M) 0H 1

for (xg.z4) € W{T} where ug € U and y, € Y are chosen such that (5.9} holds.

(ii) The operator FKT) : W(T) + U defined by F(T)(xy,zq) = (ug,yq) for
(xg,zq) € W(T), (ug,yy) € U satisfying (5.9) is bounded and linear.

(iii) A+BF(T) is a bounded operator from W(T) into { and a closed operator on {.
The norm on W(T) is prec sely the graph norm of A+BF(T). Unfortunately we were not able
to show that WW(T) is dense in H and leave this as a conjecture.

(iv) Note that W(0) = and F(0) = F .

Finally, we introduce the operator S{(t;T) € |(H) by defining

1 o(t)) 7' [ster-rie) 0

(5.10;1) S(t;T) =
* *
-P(t) I 0 S (T-t)-R (T-t)
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~1
<Ypi¥g> = <y0,c(uI-A) Bu,> + <y0,'ruu°> = - <ug,up>

which implies wug = 0, yg = 0. Now observe that the unique solution {ug,yg) @ U of (5.8)
depends continuously on x5 € H, Axy + Bup € H, z5 € H, A'zo + C'yo € H. This implies that
the norm in (iii) makes @ into a Hilbert space and (equivalently) that A + BF: W+ H is
a closed operator on H. Note that the norm on { is precisely the graph norm of A + BR
Furthermore, we obtain F e L(W,U).

It remains to show that W is dense in H. For this purpose let x3 € H,
u(+) e L2[0,T;U] be given and let x(+) e C[0,T:H] N w'+2{0,T/v] and y(+) e L2(0,Ts¥)

be the unique solution and output, respectively, of (5.2) in the weak sense. Then
— T - T -
x = |3 x(t)at, w = [g utrae, ¥ = [7 ylerae

- - —_ -] - = - -_
satisfy Ax+Bu = x(T) - x5 € H and y = C(uI-A) (ux~-Ax-Bu) + T, u. The latter equation
has first to be established for wu(°*) € W"Z[O,T;U} with Axg + Bu(0) € H and follows in

general from continuous dependence. Since the same arguments apply to system (5.3) we get

1 T T
T (fo x(t3T,xg,2z¢)dt, IO z(tyT,xo,z1)dt) e w

for all (xg,z4) € H and all T > 0. Therefore  is dense in H. w

The next and most important step in the development of this section is the characteri-
zation of those paira x;,z; for which the correaponding solutions of (5.4) are
differentiable. For this purpose we introduce the subspace W(T) C H of all those pairs
(xg,2q) € W for which there exists a pair (ug,yq) € U such that Bax; + Buy € H,

A'z1 + c'y1 € H and the following equations hold for some u £ g(A)

«45-
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*
For notational purposes we first introduce the spaces H = H x H, V =V x W,

U=UxY and the operators A € L(H,V), B € L(U,V) by

Furthermore, we define W CH to be the linear subspace of all pairs (x5,25) € H for
which there exists a pair (ug,yg) € U such that Ax, + Bu; € H, A*zo + C'yo € H and the

following equations hold for some u # o(A)

* * _1 - * *
u, = = B (uI-a ) (uzo-A zo-c yo) -Ty

0 w'o
(5.8)
-1
Yq C(uI-a) (uxo Ax, Buo) + ’I‘uuo .
LEMMA 5.2

(i) If (5.6) holds for some u & O(A) then it holds for every £ o(n).

(1i) Given (xg,zp) €W, the pair (ug,yg) €U 1is uniquely determined by (5.6) and

.

will be denoted by (ug,yq) = Fxp.2p).

{(iii) The norm

2

2 2 2
1 1€ = Ix 1< + 1 + 1
(xo,zo) x u Ax_+Bu "

+ 0z 12 +an'z 4y n
z z
W 0 0 T0H 0 H 0™ Yo

for (xg.,2q) €W, (ugeyy) = F(xg,zy) makes W into a Hilbert space with a continuous

dense injection into H.

(iv) Fe UW W and A+BFe L(W,H. Moreover, A+ BF is a closed operator on H.

PROOF: Statement (i) follows straightforwardly from the compatibility condition (2.3). 1In
order to establish statement (ii) suppose that (5.8) holds with x, = z3 = 0. Then

*
Bug € H, Cyp € H and

=44~
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The existence and uniqueness of the optimal control follows from the fact that this -
o
quadratic functional is nondegenerate. Since its derivative vanishes at the optimal -6‘

control u(*) = u(‘;xo) e L2£O,T;U] we get
u==THTHC(TIxg + T (D)

and hence u is characterized by (5.4) with 2z, = 0. This implies y(*) = y(';xo) =

- * -
T+T(M T (T))"'C(TIx; and hence z(0) = C (T) [+T(TIT (M1 1C(TIxg = Pl0)xy (Corollary
3.4). In general equation (5.6) follows from the fact that T > 0 can be chosen

arbitrarily together with the uniqueness of the optimal control. Finally, we get

J(u) = <y,C(T)xp+T(T)u> + <u,u>

<y, C(TIxg> + <utT" (T)y,w

AT T M0 Txg, 0 (Txg>

<xp,PLO)Xp> .

This proves the Theorem. a

The aim of this section is to represent the optimal control in feedback form and to

derive a Riccati type equation for the optimal cost operator P(t). The main difficulty in
this direction is to give a meaning to the operator B*P(t) since B is unbounded and AR

P(t) will in general have no smoothing properties. This may lead to an unbounded feedback ER

operator as was first observed by LASIECKA-TRIGGIANI (27} in the context of the higher j..n__g

dimensional wave equation with Dirichlet boundary control. Another problem arises from the \; ;_T\

fact that th. operator T: is needed for the representation of the output of the dual - ..?

system. We will overcome these difficulties by means of studying the differentiable ;;t g
L

solutions of the coupled system (5.2), (5.3).
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depend continuously on all four variables and are, of course, linear in (xo,z1) e H x H.
For our first result on the linear quadratic control problem we need the operator
P(t) € L(H) defined by
. -1
(5.6) P(t) = C(T-t) (Z+T(T=t) T (T-t) 17 C(T-t)

for 0 <t < T,

THEOREM 5.1

Suppose_that the SCS (5.2) is well posed. Then for every x, € H there exists a

unique optimal control u('yxo) e L2[0,TyU] which minimizes the cost functional (5.1)

subject to (5.2). This optimal control is characterized by (5.4) with zy = 0. The

optimal output of (5.2) is denoted by y(t;xo) and the corresponding weak solutions

x(t;xg) and z(tyxqy) of (5.2) and (5.3), respectively, satisfy

(5.6) z(tixg) = P(t)x(tixg)

for 0 € t € T. The optimal cost is given by

J(u) = <x0,P(0)x0>H

(5.7)
= <C(T)x, ,y(*ix.)> .
0 0 L2 {0,T;Y]

PROOF: The cost functional J L2(0,T;U] + R can be written in the form

Jtw = ACmx + T(mw? s’ I
L [0,T:Y] L”[0,T;U) L

. . . .o ]

= a0 MCMx > + 2¢u, T ATIC(TIX > + <u, T (TIT(Thutuw> . S

.
[
s o

-42-
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S. THE LINEAR QUADRATIC OPTIMAL CONTROL PROBLEM RO
-l

In this gsection we consider the problem of minimizing the quadratic cost functional [ ]

T 2 2
(5.1) J(w = [ [ly(t)ly + lu(t)lU]dt

where y(t) is the weak output (Definition 2.4) of the well posed SCS

x(t) = ax(t) + Bu(t), x(0) = X, €H o
(5.2) p
y(t) = cuI-a)" "(ux(t)-x(t)) + Tu(e), €20 ]

corresponding to u(+*) € L2[0,T101. The optimal control will be characterized in terms of

the dual SCS

2(t) = - Aa"z(t) - C'y(t), 2(T) = z eu

(5.3
* . 9 . .
u(t) = - B (MI-A ) (uz(t)+z(t)) - Tuu(t), t<T ,

which is again to be understood in its weak form (Definition 3.1). Making use of the
operators B(T), C(T), T(t) introduced in section 2.1 we can rewrite the coupled system

(5.2), (5.3) in the equivalent form

. "
u=+~ g8 (T)z1 -T(My .,

(5.4)
y = C{Tixy + T(T)hu .
For all x, € H, zy € H these equations have a unique solution pair wu(+*) = S S
ulssT,x,,z,) € L2(0,11u1, y(*) = yl:T,x45,2,) € L2(0,7s¥] given by ' . i
®
- 4
- -1, % ”
u(-;T,xo,z1) = ~[I+T (T)T(T)] (T (t)C(T)xo + B (T)z,) R
(5.5)
* -.1 »
y(':T,xo,z1) = [I+4T(T)T (M) (C(T)x0 - T(T)B (T)z1) .
@ 4
The corresponding solutions x(t;T,xo,z1) € H of (5.2) and 2(%;T,x5,2zq) € H of (5.3) I
. ]
S
-41- SR
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PROOF: It follows from (2.8), (2.10), (2.11) that x; € H and u, evu satisfy (4.3) if
and only if x5 € Z and Fxo = ug = Kxg. This proves the statements (i) and (iii).
Furthermore, the equations (4.4) and (4.5) show that KSp(*)xy = ugleixy) = [I'T(T)]-1T(T)x0

for x5 € Wp. This implies (4.7). =]
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Bug # 0 and T,uy = Uy and define xg = (uI-A)-1Bu0 ¥ 0. Then ux; = Axg - Bug = 0 and
hence (4.3) holds. Therefore x, € Wp CD(AR) and Apxp = Axg + Bup = ux,. This proves
statement (i). By duality, we obtain that cl(range (uI-AF)) ¥ § if and only if

cl(range C) ﬁf cl(range (I-Tu)). This proves statement (ii). In order to prove statement
(1ii) suppose that I-Tu € L(U) is invertible and choose 2z, € H. Defining uyg =

-1 -1 -1
(I-Tu) C(uI~-A) 'z, € U and x; = (MI-A) (z0+8u0) € H we obtain 2z = uxy - Axy - Bug

0
and hence (4.3) holds. This implies x5 € Wy and 2z = uxg = Apxg. Therefore uI-Ag is

onto. By statement (i) this operator is also one-to-one and hence u ;!G(AF). 0

Let us now consider the case that the input operator B € L(U,V) is injective and
strictly unbounded with respect to H 8o that the SCS (2.1) can be rewritten as a BCS of
the form (2,12). Then the statements of Theorem 4.3 can be reformulated in a more elegant

way.

COROLLARY 4.5

Let the assumptions of Theorem 4.2 be satisfied and suppose that the BCS (2.12) is

related to the SCS (2.1) through (2.8), (2.10), (2.11), (2.15). Then the following

statements hold.
(1) If x5 € Wy = {x € z|Ix = Kx} then x5 € D(Ap) and Apxy = 8x,. Furthermore,

Sg(*)xg € C(o,7z) N c'{o,T;H) satisfies the equations

d/dat Sp(t)xg = ASF(t)xo = S{t)bxy

(4.6)
FSF(t)x0 = KSF(t)xo, t>0 .

(ii) There exists a constant c¢ > 0 guch that the following inequality holds for

all Xq € We

T 2 2
(4.7) ]0 IKs (t)xglidt < clx 10 .
(iii) If either U 4is finite dimensional or X € L(H,Y), __:=n D(Ap) = Wg.
=39~




1f ((u—Tuu,Bu)lu € U} CUXx Vv is a closed subspace and x; € D(Ap) then it follows

1

from (4.4), (4.5) with t approaching zero that the pair (CluI-A)~ (uxo-AFXO)' Apxy=Axg )

lies in this subspace. But this implies x5 € Wp.
If Cce€e L(H,Y) and Tu = C(uI-A)-1B. then the closed loop input is always given by

Upltixg) = CSp(t)xy; and is in particular continuocus for t > 0. Hence it follows from

statement (ii) that D(AF) = Wgp. [m]

Unfortunately we were not able to determine the domain of AL in general and it does
not seem likely that D(AF) is always equal to Wp. Under the assumption that either the
input or the output operator is bounded with respect to H the previous theorems have been
established in (40]). Furthermore, the operator I - T(t) is always invertible in these
cases.

The next Lemma establishes some elementary relations between the closed loop spectrum
and the properties of T . In finite dimensions these relations provide the basis for the

u
proof of the Nyquist criterion for the stability of feedback systems.

LEMMA 4.4

Let the assumptions of Theorem 4.2 be satisfied and let u & d(A) be given. Then the

following statements hold.

(i) wu e PO(AF) if and only if ker (I-Tu) ¢'ket B. Furthermore, Apxy = ux, Af

-1
and only if there exists a up € U such that Tqu = ug and xq = (uI=-A) Buo-

{ii) p e RG(AF) if and only if ker (I-Tu) C ker B and cl(range C) ¢

cl(range (I-T )).

u
(iii) If 1;!0('1-“) then u £ o(A;) and D(Ag) = wWg.

t
PROOF: 1f 0 # x4 € D(AF) with Apxo = bxg then S(t)xg = eu X € WF for t > 0
{Theorem 4.3 (ii)) and hence Xg € Wg. Thus there exists a ug € U such that (4.3) holds
-1
and therefore ux, = Apxg = Axg + Bug and ug - Tuuo = C(uI-A) (uxo-AFxo) = 0. Since

u # d(A) we conclude that Buy # 0 and thus ker (I-Tu).l ker B. Conversely suppose that

-38~
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(1) If xo € Wp, ug € U, u £ 0(R) satisfy (4.3) then xg € D(Ap) and Apxy = axg

+ Buy. Furthermore, UF('IXO) e w1'2[0,Tyu], SF(-)x0 e C1[0,T1H] satisfy

GF(t:xo) E uF(tthxo), up(0ixg) = uy, and for t > ¢

(4.4) d/dt Splt)xg = ASp(t)xg + Bugpltixg) = Splt)Apxy
-1

(4.5) uF(tyxo) = C(uI-A) SF(t)(uI-AF)x0 + TuuF(t'xo) .

(ii) If xq € D(AF) then SF(t)xo € wg and (4.4), {(4.5) hold for all t > 0.

Furthermore, x, € Wg if and only if x4 € D(AF) and upltixg) is continuous at t = 0.

(iii) Wp is dense in H.

(iv) If {(u-Tuu,Bu)lu e u} is a closed subspace of U x V then D(Ap) = Wg.

(v) If ce L(HY¥) and T, = CI-A'B then Dlag) = Wp.

PROOF: Suppose that x; € H, ug € U, ¥ A o(a) satisfy (4.3) and define u(*) e w'*2[0,T,0)

by
ult) = ug + [} v(sras, v(+) = (1-T(m)1~'C(T) [Axp+Bug)

Then it follows from Lemma 2.5 that y(';xo,u) e w1'2[0,T)U] with y(0ixg,u) =

-1 .
C(MI-A) (ux -Ax = u5 and y(*ix ,u) = y(*1Rx,+Bu,,v) = C(T)(Axg+Buy) +

- +
0 0 Buo) T u

uo
T(T)v = v. Therefore we obtain from the definition of wu(*) that wu(e+) = y(';xo,u) =
C((T)xg + T(T}u. But this implies ult) = uF(t)xo) and, by (4.2), SF(t)xo = x(t;xo,u)

for 0 € t < T. Hence statement (i) follows from Lemma 2.5.

If x5 € D(AF) then SF(‘)x0 = x('lxo,uF('}xo)) e C‘[O,T;H] and hence it follows

from Lemma 2.5 (ii) that (4.4) and (4.5) hold for almost every t > 0. Hence Spltix, e We

for almost every t > 0 and statement (ii) follows from the fact that, by (i), Wp is

invariant under SF(t).

The density of Wp in H follows immediately from statement (ii).
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We close this section with the discussion of four interesting special cases.

COROLLARY 5.6 (bounded input operator)

Suppose that the SCS (5.2) is well posed, that B e L(U,H) and that

Tu = C(uI-A)-1B- Then the following statements hold.

] 0

———

(i) W= ((xo,zo) e W x Hlp.'z +c'cx. € H} and Flxg,zq) = (-B'zo,cxo) for ®

(xo,zo) e W. The space W(t) consists of all xg € W for which there exists a y, €Y

\am e o0

such that C'y1 € H and

L] T=t * *
B P(t)x, = fo u(e;T-t,Ax ~BB P(t)x ,~C y )ds

(5.21)
T-t * .
Yy = Cxo + IO y(srT-t,Axo-BB P(t)xo,-c y1)ds .

Py
»

Moreuver F(t)lx = - B.P(t)x and X(t)x = Cx for x @ W(t). e

(Li) The optimal control is always continuous and characterized by the bounded

feedback law k.l.
"
.®

g (5.22) ultixg) = - B'P(£)x(tixy) . o
Moreover, the following equation holds for all x € H and 0 € 8 € ¢ < T ‘{}{
.0
t *
4(t,8)x = S(t-s)x - js S(t~1)BB P(T)®(T,8)x 4t
(5.23)
*
= s(t-s)x = J§ (t,7)BB P(T)S(t-8)x AT .
L
(iii) The following equation holds for all t € (0,T] and all x,z & W
K J
-51-
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<z,P(t)x> = j': <cs{1-t)z,CS(t=-t)x>
(5.24)
T L] *
- jt <B P(T)S(1-t)z,B P(1)S(T-t)x>dT .

(iv) If xe w then P(*)x e C‘[O,T;W.] and the following equation holds for

o<t

(5.25) d/dt P(t)x + A"P(t)x + P(t)Ax - P(t)BB'P(t)x + C'Cx = 0 .

PROOF: It follows from (5.4) and (5.6) that u(tikg) = - B z(tixy) = = B'P(t)x(tix,) for
all t € (0,T] and all x; € H. This proves statement (ii). Statement (i) follows from
statement (ii) and equation (5.9).

In order to prove statement (iii) we make use of the fact that the operator
u(uI-A)-1 converges strongly to the identity in L(H) as ¥ approaches *+ ®. We replace

1

cC e L(W,Y) by c, = uC(uI-a)" e L(H,¥Y) and denote by Cu(T), Th(T), Pu(t), 0<t<T,

the operators which replace ((T), T{(T}, P(t}, respectively. Using hypothesis {S3) in
section 2.1 one shows easily that the operators C u('1‘), C;(T), Tu(T)' T:(T) converge to
cemy, ¢(my, T(TY, ™, respectively, in the strong operator topology. In the case of
the operator T(T) it is useful to consider first the case B = I, U =H and to recall
that the SCS (5.2) is wellposed in this case by duality. Hence the operator Pu(t)
converges to P(t) in the strong operator topology. It is well known [6), [17], [34]) that
the operators Pu(t) satisfy equation (5.24) with C replaced by Cu. Since IP“(t)I <
IPu(O)l we can apply the dominated convergence theorem to these equations and get (5.24).

Now statement (iv) can be established by differentiating (5.24) as in [(34]. 1In a

straightforward way we obtain the following weak form of (5.25) for x,z € D(Az)

* *
d/dt <z,P{t)x> + <Ax,P(t)> + <P(t)z,Ax> - <B P(t)z,B P(t)x> + <Cz,Cx> = 0 .
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By continuous extension this equation holds for all x,z € W, Furthermore, the eguation

can be rewritten in the form

z,B(t)x> = <z,[7 [A"P(8)x+Pla)Ax-P(s)BB"P(s)x+c Cx]ds>  , .
R

This proves (5.25). [m]

The differential Riccati equation (5.25) in Corollary 5.4 has been established in [34)
under the additional assumption that B € L{U,H) satisfies hypothesis (H2) with H
replaced by W. Under this condition also the uniqueness for nonnegative solutions of
(5.25) has been shown in ([34] and one can easily see that &(t,s) € L(W). It seems that

the latter does not hold in general under the assumptions of Corollary 5.4

COROLLARY 5.7 (bounded output operator)

's.

Suppose that the SCS (5.2) is well posed and that C e L(H,Y) and Tu = C(ul-pa)"

Then the following gtatements hold.

*
(1) W= {(x),z) e B x v'IAxo- BB z, € H} and F(xg,zg) = (-B"2g,0xg)  for

(x5,29) € W. The space W(t) consists of all x5 € H for which there exist u, e U,

Y1 € Y such that Ax, + Bug € H and

u. + [T %(ssT-t, ax +Bu —C'y Yas = 0
0 0 4 o' 1 4

0
(5.26)

v, = cx_ + [Tty (ai1-t,Ax_+Bu_,~C'y )as .
1 0o 1A%y *BU,; . =C ¥y

If these equations hold, then ®(t)xy € V' and F(t)xy = - B'P(t)xy = uy and K(t)x, = Cxg.

(ii) The following equation holds for all x,z€ H and 0 <€ t < T

(5.27) <z,P(t)x> = j: cd(t,t)z,C8(T-t)x>aT .
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{iii) The following equation holds for 0 € ¢t < T and x,z € W{t)

<z,P(t)x> = j: «cd(1,t)z,Co(T,t)x>AT
(5.28)
T * *
+ jt <B P(T)¢(T,t)z,B P(T)®(T,t)x>dt .

PROOF: It follows from Theorem 5.3 that <x,,P(0)xy> = <y('1x0),C(T)xo>. This proves
(5.27) for £t =0 and x = z. In general (5.27) follows from the fact that P(t) is self
adjoint and plays the role of P(0) for the control problem on the time interval [t,T}. L

The statements (i) and (iii) follow from (5.9) and Theorem 5.5. a

COROLLARY 5.8 (strictly unbounded input operator)

Suppose that the SCS (5.2) is well posed, that B is injective and strictly unbounded

with respect to H and that the operators A, [, K are related to the SCS (5.2) as in -.ff}i_.

gection 2,2, Then the following statements hold. ’-‘;.].
- * * e
(i) W= ((xo,zo) €z x H|A z, + K Kxg + I'Tx, e H} and Fixg.zq) = (Txg /Kxg) -——

for (xg,zg) € W» The space W(t) consists of all xg € Z for which there exist u, €U

* o
and yq € Y such that K'y1 + T u, eH and -

rx + [T°C Ax_,K'y ~T"
x, 0 u(s;T-t, 0.-K Y, u1) u,

(5.29)
T-t LI
Kxo + IO y(syT-t,AxO, ) ¢ Y, T u1) Yy -

» * *
I1f these equations hold then A P(t)x0 + K Kxo + T Fxo € H and F(t)xy = Fxo, -

K(C)Xo = Kxpe

(1i) For every x; € H the adjoint state z(*) = z(’;xo) e C{o,T;H] N W1'2[0,T72'l

and the optimal control wu(e) = u('lxo) e L2[0,T;U] and the optimal output y(+) =

y(';xo) € LZ[O,T;Y] satisfy the equation

-54-




- e e e w— - v
B N " ERirin e Sl S et S Mt e AU N Aot I AVl Bre 4oan Jan aton b her o me s ey

Ao eoa 4

@
1
. - . - .
(5.30) z(t) + T u(t) = - 4 z(t) -« K y(t), z(t) =0 . ) j
®
1f moreover x, @ W(0), then z(+) € C'(0,TiH] and x(+) = x(*sx;) € C(0,T:2] N C'(0,T/H) S
satisfies the equation R
S
. L
(5.31) x(t) = 8x(t), Tx(t) = u(t), y(t) = Kx(t), x(0) =~ x5 . .
(iii) The following equation holds for all t € (0,T] and all x,z € W(t) A%
"
- <
o
1
<z,P(t)x> = f: XO(T,t)2,K0(T,t)%> AT {
(5.32) ]
+ [T etr,ez,le0r, 0 a i
|
PROOF: Statement (i) follows from (5.9) together with the fact that A'z, + C'y, € H and
» * o9 * L] * - * -
B (uI-a ) (uz1-A 21-C y1) + Tuy1 = - uq is equivalent to A z, + K Y, + T u, € H (Lemma
2.2). The remaining assertions of the Corollary follow directly from Theorem 5.5. O

COROLLARY 5.9 (strictly unbounded output operator)

Suppose that the SCS (5.2) is well posed, that C has a dense range and is strictly

unbounded with respect to H and that the operators A, §, G are related to the SCS (5.2)

ag in section 2.3. Then the following statements hold.

« - . * * T
(1) W= {(xo,zo) e H x X |Ax0 - GG zy - an zg e H} and Fixg,zp) = (-G zO,Q zo) s .
for (xg,zp) € (» The space Ww(t) consists of all x5 € H for which there exist u; e U . o g
- . e .1
and yp € Y such that Ax, + Gu, - fly, € H and o

ug + [3 7% ulsrT-t, Ax +Gu -0y ,0)ds = 0

(5.33) L
Y. + fT-t y(8;T=t,Ax_+Gu ~{ly ,0)ds = 0 .
0 0 0 0 0

P S WY
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If these equations hold then P(t)xo e x' and F(t)xo = -G'P(t)xo = ug and K(t)xo -
*
Q P(t)xo = yg-

(ii) For every x; € H the optimal state trajectory x(<} = x(*1x,) €

clo,T;H] N w1'2[0,T;x] and the optimal control wu(e) = u(°;x0) e L2[0,T;U] and the

optimal output y(°*) = y(';xo) e LZ[O,T;Y] satisfy the equation

(5.34) X(t) + Qy(t) = Ax(t) + Gu(t), x(0) = x5 .

If moreover x; € W(0) then x(*) e C‘[O,T;H] and z(*) = z(O;xo) e C[O,T;x'] n C'[O,TyH]

gatigfies the equation

(5.35) 2(t) = - Az(e), 2"z2(t) = y(t), u(t) = - c"z(£), z(T) =0 .

(iii) The following equation holds for all t € [0,T] and all x,z € W(t)

T » *
<z,P(t)z> = jt <@ P(T)(T,t)z,8 P(T)O(T,t)x> dr
(5.36]
T * *
+ jt G P(TIO(T,t)z, G P(TIO(T,t)> AT .

PROOF: Lemma 2.12 and Theorem 5.5. DO

The linear quadratic control problem (LCCP) for infinite dimensional systems with
unbounded control and observation has previously been studied e.g. by LUKES-RUSSELL [30],
RUSSELL (37}, LIONS (28], BALAKRISHNAN (2], LASIECKA-TRIGGIANI [25], [27], FLANDOLI ([13],
SORINE [42], [43] for various classes of partial differential equations (PDE) and by
ICHIKAWA (20), DATKO ([9), DELFOUR ([10], ITO-TARN [21]), PRITCHARD-SALAMON [34], KARRAKCHOU
[22), for retarded and neutral functional differential equations (FDE). A general semi-
group theoretic framework for the LQCP which allows for unbounded input and output

operators and applies to large classes of PDEs and FDEs has been presented in [34].
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However the "degree of unboundedness" in the input and output operators which can be
allowed in (34], is not general enough to cover all cases of interest. In the theory
developed in this section there are no requirements on the operators A, B, C, Tu other
than wellposedness. In this sense our approach includes all previous results on the LOCP
for wellposed control systems. However, more specific conclusions and results are
certainly possible under more restrictive assumptions. In the case of analytic semigroups
for example we refer to FLANDOLI (13], SORINE (42], [(43], LASIECKA-TRIGGIANI (25], PaPRATO
{8) and for the LQCP on the infinite time interval under stronger hypotheses to PRITCHARD-

SALAMON ([34]. Moreover, we mention the recent paper by FLANDOLI ([14] which contains a very

nice approach to the LQCP for non well posed Cauchy problems.

4
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6. PUNCTIONAL DIFFERENTIAL EQUATIONS

The aim of this section is to show how a very general class of neutral functional
differential equations (NFDE) fits into the framework of section 2 so that the results of
sections 4 and 5 can be applied. Consider the NFDE

d/dt (x(t)-Mxt-Gut) = th + B“t ’

(6.1)
y(t) = Cx, + Du

t ’

where u(t) € R", x(t) € K*, y(t) € FP and x. is defined by x (1) = x(t+1) for

~h € 1 € 0 where 0 < h < ®, Correspondingly L, M, B, G, C, D are bounded, linear
functionals on the appropriate spaces of continuous functions. They can be represented in

the form
h h h
L =[5 an(1)e(-1), Mo = Jo amet-1), v = [ a(T)e(-T) ,
h h h
B¢ = [§ aB(T)E(-T), GE = [1 ar(T)E(~T), DE = [ AS(TVIE(-T) ,

for ¢ € Cl~h,0;®"], £ € Cl-h,0;®"] where n, u, B, Y, Kk, § are normalized matrix
functions of bounded variation, that is they are constant for T 2 h, right continuous

for 0 < T < h and vanish for T € 0. Note that the expression Lx, = dn * x(t) makes
sense as an L3-function of t if x{*) e L2[-h,T;RP]. In order to guarantee the existence

and uniqueness for the solutions of (6.1) we will always assume that

(6.2) H(0) = lim u(t) .
T+0

Given any control input wu(°) @ Lz[-h,TylP] a function x(+) € L2[-h,T;!P] is said to be

a solution of (6.1) if the function
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(6.3) qit) = x(t) - Mx, = Gu., 0<e T

is in w1'2[0,T;IP) and satisfies &(t) = Lx, + Bu, for almost every t € [0,T]. Under
the condition (6.2) it has been shown in [4], [40] that system (6.1), (6.3) admits a unique
solution pair x(*) e L2[-h,T;R"], q(*) e w"z[O,Tyln] for every input ul(+) e L2[0,T}IPJ

and every initial condition of the form

(6.4) q(0) = ¢%, x(1) = ¢} (1), u(t) = ¢%(1), -h < T <O ,

where
o= (¢°,6",¢%) en = &* x L2(-h,0;®"] x L2(~h,0; %" .

In this section we will be concerned with the problem of finding an abstract evolution
equation which equivalently describes the solutions of (6.1). Such an evolution equation
has been derived for neutral systems with state delays only (G = 0, Bu, = Bgu(t), C = 0,
D = 0) by BURNS-HERDMAN-STECH [4]. For retarded systems with input delays (M =0, G = 0,
C =0, D=0) we refer to ICHIKAWA {20), VINTER-KWONG [44), DELFOUR [10], and for neutral
systems with delays either in control or observation to SALAMON (40]. Retarded systems
with simultaneous delays in control and obgervation (M = 0, G = 0, D = 0) have been for
the first time successfully treated in PRITCHARD-SALAMON (34]. That approach, however, is
not applicable if D ¥ 0 the problem being “too much unboundedness” in the input and
output operators. A state space approach for this class of systems (M = 0, G = 0) has
been developed recently by DELFOUR-KARRAKCHOU [11] using the forcing function state concept
which is due to MILLER (31]. We use a different approach to derive an evolution equation
representation for general system of the form (6.1).

In order to reformulate system (6.1) in the framework of section 2.2 we define
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z=1{0enlo ew 2-n,0r", ¢ e w'2(-n,0;8™, ¢° = 0'(0) - mp' - Go

.

v=H,¥y=+8F ,

a9 = (L9'-8¢2,0",0%), To = 0%(0), ko = co' + Do? .

THEOREM 6.1

Let the spaces Z U H and the operators 4 € L(z,H), T' e L(Z,U), Ke L(zZ,Y) be

defined as above and let ¢ € zZ, u(*) e w"Z[O,T;IP] satisfy ¢2(0) = u(0)., Furthermore,

let x(°) e L2[-h,Txnn], q(+) e w"z[O,T;Rn], y(*) e LZ[O,T;IP] be given and define

(6.5) x{t) = (q(t),xt,ut) eH ,

for 0 € ¢t < T. Then x(t), q(t), y(t) satisfy (6.1), (6.3), (6.4) if and only if

x(*) e C[0,T32) NC'(0,T;H) satisfies

a/at x(t) = dx(t), x(0) = ¢ ,
(6.6) Px(t) = u(t), 0 <t <T ,

y({t) = Kx(t) .

PROOF: If x(t), w(t), y(t) satisfy (6.1), (6.3), (6.4), then x(+) € W' /2[-h,T;:R*] (see
[40, Theorem 1.2.3])) and moreover u(°*) e wl'zl-h,T;nF]. Now it follows from the shift
property of the term (6.5) that ;(') e Clo,T:2) N C‘[O,T;H] and standard arguments in the
theory of FDEs (e.g. BERNIER-MANITIUS (3], SALAMON [40, Theorem 1.2.6]) show that

d/dt ;(t) = A;(t). The equations u(t) = F;, y(t) = K;(t) are obviously satisfied.
Therefore ;(t) satisfies (6.6). The converse implication follows from the fact that the
restriction of & to ker I' is the infinitesimal generator of a strongly continuous semi-

group {40, Theorem 1.2.6] and therefore the solutions of (6.6) are unique. D
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Combining Theorem 6.1 with the existence, unigueness and continuous dependence results

for the solutions of (6.1) (see e.g. [40, Theorem 1.2.3]) we obtain that the BCS (6.6) is

wellposed.

In order to derive a satisfactory solution of the linear quadratic control problem we
have to clarify the relation between the dual system of (6.6) and the transposed system of
(6.1). Following ([31], (10], ([34], (40], [41) we write the transposed NFDE in the form

( > -
2e) = - 77 an(Dztern) - (778 @fmztern) - [TF acTinviesn) - vie-m

(6.7 wit) = [77° aBT(myz(esr) + [T7° avT(niz(ern) + [T7 a8Tin)viest) + viem

J

z2t) = ¢, t<T

\

where ¢ = (WO.W1.W2) e H. The obvious existence, uniqueness and continuous dependence

results hold for the solutions of (6.7) [40, Theorem 1.2.3]. The state of (6.7) at time

t > 0 is the triple z{t) = (z(t),2%,w") e H where =zt e t?(-h,0;R"] and

wt € 12(~h,0;®®] are given by

%) = [T 5 %anT(r)z(temrr) + 5t () zerern) + [T B ac T v(teaer) 4 vi(es-m)

(6.8)
wEie) = [TEaT () z(ereer) + [T F P Tz eemer) + [T E TR T () v(ermr) vZ(t+s+T)

for ~h € 3 € 0. with this definition it follows from standard arguments in the theory of

FDEs that the state x(t) € H of the NFDE (6.1) and the state z{(t) € H of the NFDE (6.7)

always satisfy equation (3.4) (see e.g. [41], [40, Theorem 2,3.5] or [34, Proposition

2.4)). Using this fact together with Corollary 3.4 we obtain the following result as an

immediate consequence.
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JREM 6.2

Let ¥ € H, v(*) e L2(0,TsRP), z(*) e w'2[0,T;®"], w(+) e L2{0,T/R™)

-

be given and

z(t) = (z(t),z%*,wt) @ H be defined by (6.8). Then z(t) and w(t) satisfy (6.7)
almost every t € [0,T] if and only if ;(') e C[0o,T;H] N w1'2[0,T;z'] is the unique
ition of the abstract POP

) dzat z(t) - Tw(t) = - A"z(e) -~ K'v(t), £ €T, 2(T) = ¢ .

We can now transform the BCS (6.6) and the POP (6.9) into their corresponding semi-
p control system as in section 2 and then apply Theorem 5.1. Alternatively, we can use
llary 5.8 directly to obtain that the optimal control wu(*) = u(+;¢) e Lz[O,Tiﬂpl

h minimizes the cost functional (5.1) subject to (6.1), (6.3), (6.4) is characterized

he transposed equation (6.7) with ¢ = 0, w(t) = u(t), v(t) = y(t) (compare KARRAKCHOU

).
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7. PARTIAL DIFFERENTIAL EQUATIONS t ]
The aim of this section is to clarify the relation between the framework in section 2 - ® - j
4
and the one developed by LIONS [28] and LIONS~-MAGENES ([29) in their classical work. ,:
Although some of the material in this section is known, at some places things are presented ) ’g:
in a slightly different way than usual. Therefore, we feel that a somewhat more elaborate : ;
discussion is appropriate. ®
The semigroup theoretic reformulation of boundary control systems is of course not -
new. Earlier work in this direction has been done for example by BALAKRISHNAN (2], 1
WASHBURN ([45), CURTAIN~-PRITCHARD (6], LASIECKA-TRIGGIANI (24]. One of the important j
insights in (2], [45], is that the input operator is given, roughly speaking, by composing ¢ i

the infinitesimal generator with the solution operator of an elliptic problem. We find it
convenient to take a slightly different route and introduce the input operator directly on
the basis of a classical duality result (Theorem 7.1 below).

In order to avoid confusion we point out that throughout this section we denote by
V the space introduced by Lions and by & an open domain in R?. Furthermore, whenever
the letter A appears in this section it will denote the operator of section 2.2 and not

the Laplacian.

7.1 PARABOLIC SYSTEMS

Consider the parabolic PDE with Dirichlet boundary control described by the equations

3z (x,t) +

= (-1 1°10Pa 0%y (x,t) =0, xR, £>0
* lot, o|<m po

(7.1)

Daz(x,t) = uj(x,t), x €3, t >0, 3 =0,1,...,me1 ,

on a bounded, open domain  C R® whose boundary 3% is a compact orientable

L .
C - manifold. We assume that the coefficlents apu(x) are in ( (1) and satisfy the

uniform ellipticity condition
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a o(x)ﬁpﬁo > clﬁiz, xef, g e R,

Ioll}clﬂn P

some congstant ¢ > 0. The functions uj(x,t) are understood as the control inputs and
s the aim of this section to show how system (7.1) fits into the framework of section 2.
Following LIONS (28] and LIONS-MAGENES (29] we first introduce the spaces V = Hg(ﬂ),

» -m

;2(9), vV = H () so that

. *
vVCHCV
continuous, dense injections and we define the bilinear form al(+,*) on (@) by

aly,9) = Iq apo(x)‘n"w(x)o"cp(x)dx

lol,}°|<m

*
9,y € (). Furthermore, we introduce the differential operators L and L from

) into LA by

- _nlelge o
L¢ (=-1) D (apdD ¢)

IoI,)M‘m

. _nlolye P
Ly = (-1) D (apcD ¥)

ol .%0l<m

Y,y € Hzm(ﬂ)- Then the following basic duality result plays a centrol role in this
ion. For the proof we refer to FOLLAND (15, p. 288] in connection with the trace

rem.,

REM 7.1

*
(1) There exist differential operators Bj of order 2m-1-j for j = 0,...,m-1,

ned in a neighborhood of 3%, such that the following equation holds for ¢ € @),

PRI
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1e wellposedness for general systems of the form (7.12) seems to be an open

n. In fact, a spectral analysis of the case m = 2 in a single space dimension

tes that the well posedness in the space H = H X V’ cannot be expected unless

20 for j < m=1, However, in the case m = 1 with L the Laplacian and Dirichlet
ry control, that is

n %

1 2

" v
. B = =D I
Ix v

Lo = )
v e Hz(ﬂ), the following nice result has been established by LASIECKA-TRIGGIANI
M 7.9 [26]

E m=1 and Le Ln2@),22@)), 8" e LH%(®),12(30)) are given by (7.26) then the

.15) satisfies hypothesis (S2) of section 2.1.

e conclude that the SCS (7.15) is in fact well posed if (7.26) holds and C e L(V.,V)
t the above results can be applied in this situation. If C t’L(v',V) then the
operator (C € L(W,Y) is unbounded with respect to the state space H = H X V'. It
to be a reasonable conjecture that the SCS (7.15) is still wellposed for a certain

of unbounded output operators.

2 also mention the paper by GRAHAM~RUSSELL (18] which is concerned with regularity
ties of the wave equation under Neumann boundary control.

inally, we point out that analogous results on the linear gquadratic control problem

2en derived by LASIECKA-TRIGGIANI {27] for system (7.12) with the cost functional

s = [T g zxer?ax + [0 utx,e)%ds(x) Jae

-78-

PR, =y MO S, N R

9
. « e - -t .c_....'."_.‘..".'_. R NN ._.'_ - ; -‘. -, - . ) -
A IR WA s & - T AL P A DAL TP W AL EPY P S-S S S S S T SR 1 Za d lala = L A e

4
]
.
RN
K

.9
g
AT
T _.d
o 1
_e .




T T T Ty M e s e e e o
- - . ‘ N .o T T - D NTETE ~ AR -

- *
re? + jg ® a(sir-t, (¢',80%),(0,~C yds =0 ,

(7.23)
o *
e’ + [T yisim-e), 07,86, 00, ¢ s =y, -

Then we obtain the following result as a consequence of Theorems 5.2, 5.3 and Corollary

5.8.

COROLLARY 7.8

Suppose that the SCS (7.15) is well posed. Then the following statements hold.

(i) For every ¢ € H there exists a unique optimal control wu(+*;p) e LZ[O,T;U]

which minimizes the cost functional (7.22) subject to (7.14). This optimal control is

characterized by (7.20) with ¢ = 0. The optimal output of (7.14) is denoted by y(t;9)

and the corresponding solutions z(t;¢) and w(t;¢) of (7.14) and (7.20), respectively,

satisfy

(7.24) (=w(t:0)~C y(£10),w(t:0)) = (L) (2(£10),2(t:9))

for 0 < t € T. The optimal cost is given by

(7.25) J(u(*;9)) = <¢,H(O)W>H'H. .

(ii) ¢ e W(0) if and only if u(*;9) e w'r2(0,T;u], y(+:9) e W'+ 20,13y,
z(*;9) € C(o,7;2) N C'{o,7:8] N C2(0,T:v"), w(+:¢) € Cl0,msW] N ¢'{0,7;v].
If © e W0) then (z(ti®),z(t;P)) e W(t) for 0 < t < T and
w(t:@) = Tz(t;9) = =B wit;p)

(7.26)
= -B" [M(E)(z(t39), 2¢e;0)7 .
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. ® L 4
asat (w(t)+C y(t)) = A w(t} , t<T

* 1 o * 0
u(t) = - B w(t), w(0) =¥ eV, w(0) + Cy(0) =-% €H .

srecisely, if w(*) e C[0,T:v] N w' 2(0,T;H] with w(e) + c'yie) e [0,m50) N Cl0,Tiv"]
‘ies (7.20) then ;(') = (-&(')-C'y(’).w(')) e C[O,T;H.] n w"Z[O,T;w‘] is the unique
lon of (7.19) and vice versa. The output of (7.20) is only well defined in a strong

if w(*) € [(0,T;W] or, equivalently, wie) + C'y(') e C1[0,T;H]. This will always

» case if the system is wellposed and y(°*) € w1'2[D,T;V], w(0) e w, w(0) e v.

in the special situation of (7.12) the dual system corresponds to the hyperbolic PDE

%‘ (%E + ¢y ety + -01%15%a pPwrix,e) =0, xen, tcT
t t Ip” 0|<m po

*
uj(x,t) = ~ ij(x,t), xe3d3q, t<T, J=0,sss,m=1 .
Let us now consider the problem of minimizing the cost functional
= (T 2 2
) J(u) ]0 y(e)12 + Tace)iglat

ct to the SCS (7.15), respectively (7.14). In order to apply the results of section 5

is problem we assume that the SCS (7.15) is well posed and introduce the operator
L 4 * _1 *
N(t) = C (T~t) [I+T(T=t)T (T-t)] C(T-t) € L(H,H )

0 <t <T. Also, for all v eH, V& H" we denote by z(*:T,9,¥) e C(0,T;H] N
;v N w2e2(0,T;w], ulesT,0,9) € L2(0, 15U, y(iT,0,¢) e L2[0,T;¥] and

,0.9) € Cl0,Tsv] Nwle2(o,TH] with cz(+:T,0,¥) € w20, T;¥] and

S0,¥) + C.y('rT,w,W) e Clo,T;H) N C‘[O,T:V.] the unique solutions of the coupled
ions {7.14), (7.20). Finally we introduce for 0 ¢ t < T the space W(t) of all

x H for which there exists a y, € ¥ with C'y1 e Vv and
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under Sp(t). Moreover, if ¢ €Wy then pr = (¢ ,AQ +BCY ) = (¢ ,8¢" ) and T

zp(*19) € C[0,Taz) N C'{o,73H] N 200, T3V"), u (+;9) e W'r2(0,Tou]  with o
o

. . . . _~- . -’
z (t19) = Z (1AW, u (ti9) = uF(t;AFW), upltio) = PzF(t;w) = CzF(t:¢)~ :;:‘ .
(iv) I1f either (/] is finite dimensional or C e L(V‘,V), then D(Ap) = Wg. ;'. s
ROy
ST L g
We consider the dual system of the SCS (7.15) in the dual spaces V' =V x W, ® )
. .
H' = H x v, W=V xH. we identify only the spaces (U and Y with their respective - N
: .
* =
dual so that the operators A* e L(VU L HTY N L(H*,w'). c* e L(V,w'), B* e L U, Tu e Ly u B
are given by - E

@
1
o A 0
* * -

A = , C =1, ' ]

1 o0 c _
. " . * 2 w1 =

g =[o B],Tu-un(uI-A)c . @

* .y * L
Observe that the range of (HI-A ) 1 is always contained in H x W, that B* =10 &% L]
extends naturally to a bounded operator on this space and that Tu is given by the hi:wi-ui
- —
composition of these operators. Now the dual SCS in the time reverse form is described by A,
the equations - :F:{f:
1
N

~ ~ * ~ *
a/at wit) = - Aw(t) - Cy(t) , wim)=veH .

(7.19) . . - - .
u(t) = ~ B (uI-A )(uw(t)-d/at w(t)) - Tuy(t) , £<T .

.
——d ol

'
)

The equation for the output requires that w(*) = (w,(*),w ()] e w'e2[0,7;H"] which IR

L 4 .
implies that A'w,(*) = w (*) e 12(0,T;H] and hence w,(*) € L?(0,T;W]. Furthermore, the ®
output of (7.19) can be written in the simpler form wu(t) = - B*w(t) if B" is understood j:::-,?
as the extended opeator on H X W. Note that the SCS (7.19) is related to the second order ’ ?: =

Cauchy problem
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d/dt z(t) = [2 ;] z(t), z(0) =9 € ’

A7) [r o]ztt) = ute) ,

y(t) = [0 C];(t). t>0 ,

in section 2.2. This means that ;(‘) e C‘[D,T;H] satisfies (7.15) if and only if
*) e C(0,T57) and (7.17) holds.
We point out that everything remains the same if U is an arbitrary Hilbert space and
] L(U,W') is injective and strictly unbounded with respect to v"  which we will assume
om now on. In that context it is interesting to state explicitly the consequences of the
rturbation result in section 4. For this purpose we denote by B(T) e L(LZIO,T,U],H),

T e L(H,L2[(0,T:¥)) and T(T) e L(L?(0,T;4), L2[0,T,Y]) for T > 0 the operators

troduced in section 2.1.

'ROLLARY 7.7

Suppose that the sCS (7.15) is well posed, that V¥ = (I and that I - T{(t) is " .,_ 1

vertible for t > 0. Then the following statements hold.

(i) The operators Sp(t) = S(t) + B(t)[I-T(t)]"C(t) e [(H) define a strongly
ntinuous semigroup whose infinitesimal generator will be denoted by AF' ___“____*
.~ 2. 4

(ii) The closed loop input uf(*) = uF('N)) = [I-T(T)]-1C(T)‘D e LZIO,T;UJ and the

rst_component z(e) = zF("‘D) e C[o,T;H] N C‘[O,T;v‘] n w2'2[0,'r;w'] of S(t)p are the

igue solutions of the feedback system

. * 0 . 1 *
Z(t) = Ax(t) + Bu(t) ew , 2(0) = ¢ € H, 2(0) =¢ €V B

.18)

“J'J.‘l l.l

u(t) = d/dt cz(t) , t>0 , el
. , B
enever ¢ € H. Furthermore SF(t)‘D = (z2(t),z(t)) for all ¢t > 0. - , o
—_— DR =

(iii) Wy = (0 e mxulav? + Bow' e v') = (0 € zxn|Te® = o'} C D(Ap) is invariant
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e
and vice versa. The equation for the output, of course, requires that ;(t) e W"ZIO.T;HJ.
It can be written in the simple form y(t) = C;(t) if C 1is understood as the extended
operator on H x H. However, for some purposes it is convenient to keep (7.15) in its more )
_.{ "

complicated form. In particular, the duality relations can be derived in a straighforward

way and the results of sections 4 and 5 can be applied directly. ' L.

It requires only the G;rding inequality (7.4) to establish the hypotheses (S0) and

(S1) of section 2.1 for the SCS (7.15). In fact, it follows from the Hille-Yoshida- :

®
Phillips theorem that A is the infinitesimal generator of a strongly continuous group ’
S(t) € L{W) N L(H) N [(V). This proves the uniqueness for the weak solutions of (7.12) and -:j_:
their existence if ¢ = (¢0.¢1) e H{ and uj(') e W1'2[0.T2L2(39)]- We denote the weak
{
solution of (7.12), respectively (7.14), always by z(t;¢,u) and it is given by the first '. :
’ 1
component of
~ 4
z(t;Q,u) = S(£)0 + [ S(t-s)Buls)ds eH . 4
- e o
L

If z(*;P,n) € C’(O,T;H] then the corresponding output of (7.12), respectively (7.14) or

(7.15), will be denoted by y(t;P,u). 1If the SCS (7.15) is well posed then the same

P I TN

notation extends to arbitrary u(*) e L2[0,Tru]. In this case it follows from the usual

density and continuous dependence argquments that the equation

(7.16) czltig,u) = co + j; y(s:9,u)ds

holds for all © € H, u(*) e L2[0,Tsy}, t > 0.

Now let Z C H, & e L(Z,V.), Tj e [(2,U) be given as in section 7.1 and define
reltz,h by Ty= (Tow,.c. I ¢) for ¢ € Z. Then we get SR

I={opeH|lhp € H+ range B} = 2 x H

and the SCS (7.15) is related to the BCS
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(7.14;2) z(0) = ¢0 e H, z(0) = ¢’ ev' ,

where u(t) € U=U® and B e L(UW") is defined as in Remark 7.5 (ii). If

z(*) e C'{0,T/H] then the output of the system is given by
(7.14;3) y(t) = a/dc Cz(t), ¢ > 0 .

In order to rewrite system (7.14) into a first order SCS as in section 2.1 we introduce

the spaces W = v x H, H=H x v, V= v" x w' 80 that
WCHCVY

with continuous, dense injections. Since the bilinear form a(¢,*) need not be positive, we
consider on each of these spaces the standard inner product and identify none of them
with its respective dual. We also introduce the operators Ce LW,Y), Ae L(W.H) N L(H,V,

Be LU\, Tu e L,Y) by

A= , B = ’

C=100 ¢l ., Tu'uC(UZI-A)-‘B .

-1
Observe that the range of (uI-A) B is always contained in H X H, that C = (0 (o3}
extends naturally to a bounded operator on this space and that TU is given by the
composition of these operators. Now for every weak solution z(t) of (7.12) the function

-

z(+) = (z(*),z(+)) e C{0,T:H] N w'*2[0,T;V] satisfies the abstract SCS

d/at z(t) = Az(t) + Bu(t), t » 0, 2(0) =9 €H |,

(7.15)

y(t) = Cu1~A)" (uz(t)-a/at z(e)) + Tu®
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7.2 HYPERBOLIC SYSTEMS o q

Consider the hyperbolic PDE with Dirichlet boundary control described by the equations

,
a_:_ (x,t) + -1 1°15° a Uboz)(x,t) =0, xeq, t>0 ,
It 'plr dl‘m e
(7.12) ﬁ Dgz(x,t) - uj(x,t), x€ea¥N, £t>0, j=0,...,m1 , :311{ Ry
() =C 22 (v,e), €50 :“‘Ii'-q
\ Y 7t 1T, v ®

where @ C R* and apu(x) have the same properties as in the previous section and C is a R
bounded linear operator from H = Lz(ﬁ) into the Hilbert space Y. Also the spaces B
U = Lz(ﬂ), w= Q) n H:(ﬂ). V= H:(ﬂ), the bilinear form a(*,*) on H (2) and the : 1

* 2m 2 . * . ) .
operators L,L e L(H™(),L%(R)), By € L(U,W ), a € Lw,#) N L(v,v) NL(H,W ) are defined

as in section 7.1. Then it follows again from Theorem 7.1 that every classical solution of

(7.12) is a weak solution in the following sense.

DEFINITION 7.6 (weak solution)

Let uj(°) e LZ(O,TrLz(aﬂ)] be given. Then a function z(*) € C[O,T;Lz(ﬂ)] n

C'[O,T;H-m(ﬁ)] is said to be a weak solution of (7.12) if <y,z(*}> € W2'2[0,T] for every

ve #2¥™@) n H:(ﬂ) and the following equation holds for almost every t € [0,T]

*

(7.13) a%/at? <y,z(t)> + 'y,z(t)> = )_'(;"‘mj

Y,u (t)>
3 Lz(am

This means that z(°*) e C{0,T;H] N C‘[O,T;V‘] N WZ'Z[O,T;W'] satisfies the second order

abstract Cauchy problem

(7.14;1) 2(t) = ax(t) + Bu(t) , t>0 ,

~71=-
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Now let ¢ € Z be given and obsgerve that ¢ = ):.1(MI-A)-1Bij¢ =
wi-a)" T (up-8¢) e Hg(ﬂ). Moreover, choose ug e (aq) converging to Tj¢ in Lz(aﬂ)-
Then there exists a ¢" € C¥(R) with PjOn = ug for j =0,...,m~t (FOLLAND (15, p.

294]). Hence it follows from statement (iii) that

n m-1 -1 n m
= ¢ + I-A) B -T.9) e H (R) .
¢ =@ + )07 (uI-A) jui-T 0 (2

Furthermore, w“ converges to ¥ in Z since rj¢n = u;
l:-1u(u1-h)-18j(ug-rj¢)- Therefore H'(R) is dense in 2. D

and A(g"-@) =

REMARKS 7.5

(i) The results of this section indicate that 2 1is the natural space for studying
the solutions of both the parabolic PDE (7.1) and the associated elliptic boundary value
problem (7.11). It follows from Lemma 7.4 that 2 is the completion of c @ with respect

to the norm

lq)l; = 1924 2 + u.cplz_m + l‘:“loaqalzz .
L7(Q) H () L7 (3R)
(ii) Let us define B @ L(U®,W') by Bu = lm-1B u, for u= (u ye ™
’ Y 0 3% 07 Up_q .
Then it follows from Lemma 7.4 that the operator (uI-A)-1B € L(u™,Z) is the extended
solution operator for the elliptic boundary value problem (7.11). This relates our results
to those by BALAKRISHNAN (2], WASHBURN [45].

T5u e L2(@) satisfies

(iii) If u e U™ then it is easy to see that ¢ = (uI-a)~

Y + yp = 0 in the distributional sense. Hence it follows from the local regularity theorem
o«

for elliptic operators (see for example FOLLAND [15, p. 269]) that ¢ e( 1oc(ﬂ)- This shows

that 2z C HTOC(Q).
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In particular, AP = -19 for ¢ € Hzm(ﬂ).

; 2 m-1 -1 m
i . a0 = - .
(ii) Let uy € L(99) be given and suppose that ¢ 10 (¢I-A) Bj“j e H ()

Then
a(v, @) + u<y, > =0, VeH® |,
(7.11)
oo =u L3 =0t
(1i1) 1f ¢ e H(2) then ¢ = )17 (u1-0)7'5,0}0 € H'(®) and (7.11) holds with
3J
uj = D\)°'

PROOF: Let @ € H™(Q) be given and define ¢ e V' by <y, = -a(y,9) for v e ug(n).
Then it follows from Theorem 7.1 that the following equation holds for ¢ e Hzm(ﬂ) n H:\ﬂ)
*

o 3 L 4
<Y,AP + 2.3 ’5303‘» - = - <L Y,0 4 2‘:-1<Bj¢',0\j)tp)u - <y,o>v R
W, )

By equation (7.7) and Lemma 7.3, this implies ¢ € 2, A¢ = ¢, Fj¢ - Dg@- Thus we have proved
that H™®) C 2 and (7.9), (7.10) hold. It follows from (7.9) and (7.10) that there exists

m
a constant ¢ > © such that lez < clyt m for all ¢ € H (&) and hence the injection of
H

H'(®) 1into 2z is continuocus.

This proves all the assertions of statement (i) except from the density of H(Q)  in
Z. State (1i) follows now immediately from Proposition 2.8 (i). 1In order to prove statement
(1i1), let ¢ € H™(?) be given and define ® = 1:"(uI-A)"Bjrj°- Then it follows again
from Propogition 2.8 that ¢ € 2 and 49 = u¢, Fjw = rjo. Therefore we get from equation

*
(7.7) that A(y-9) = AY - &® € V and hence ¢ - & € n:(n). This proves statement (iii).
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The previous Lemma allows us to introduce the space
. m~ 1
z=1{peulppev + lo range Bj}
*

and operators 4 : 2z + VvV, rj : 2% U such that
m=1

(7.7) Ap+ ) BT o=08¢ , vez .
0 33

Then 2Z becomes a Hilbert space if we define

2 2 2 m-1 2
1915 = 4opb a1 LR "] Sl
2 Phy + 100 v * 10 j(p u

Now the results of section 2.2 show that the SCS (7.5) is equivalent to the BCS

2(t) = Az(t) . t20, 20 =z ez ,

(7.8)
sz(t) = uj(t) ¢y 3 =0,000,m=1 .

More precisly, the BCS (7.8) is well posed in the state space v' (Proposition 2.11) and
for all z; € Z and all uj(') e H1’2[0,T;L2(3ﬂ)] with szo = uj(0) the function
z(';zo,u) defined by (7.6) is in C([0,T;2] N C1[0,T;V*] and satisfies (7.8) (Proposition
2.8). Moreover, the definition of 2 shows that every solution z(+) € L2[0,T;H] N

w'*2{0,1;v") of the scs (7.5) is in 1L2[0,T;z] and also satisfies (7.7).

LEMMA 7.4

(i) H™(®) Cz with a continuous, dense injection and

(1.9) WA = - alv,9), 9@ HNR), beHI)
(7.10) rw= Daw. o e ™MW, = 0,000 ,m1 .
-68-
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and depends in these spaces continuously on 2z, € v' anda uj(-) e L2[0,TyU], j = 0,000,m=1,
This proves the existence, unigueness and continuous dependence for the weak solutions of
{7.1)s In other words, the SCS (7.5) is well posed in the state space V' in the sense of
Definition 2.4, if the output is defined through any bounded operator on H.

In order to transform the SCS (7.5) into an abstract BCS with v' as a state space we

have to make sure that the input operators B, € L(U,W') are strictly unbounded with
3 Y

respect to this space.

LEMMA 7.3 . B

Zm—1

*
o Bjuy € V' == ug = uy mecemyp =0 .

PROOF: Suppose that not all the uy vanish identically and let k € {0,...,m-1} be the
smallest index with uk(°) Z 0. Choome V(*) € C”(aﬁ) such that <v,u> = 1. Let vi{x),
x € 3, denote the (global, smooth) outward unit normal vector. Then the neighborhood
Ve = {x + tv(x)|x e 3, -€ < t < €} is diffeomorphic to 3R x (-¢,6) if € is
sufficiently small. Pinally, let 5(*) € ¢ (R 10,1]) satisfy &(t) = 1 for |[t] < 1/4

and L(t) = 0 for |t| > 1/2. Then we define ¥, € C (R) by

th-1-k vix)

a1 0T b o * &2 e e 0
k

We(x+tv(x)) = L (t/€)

*
and ¥ (x) =0 for x e Q\Ve (compare FOLLAND (15, p. 294]). Then ije =0 for 3> k

*
and Bkwe = v. This implies

- -
<we,)_'(‘)' 1Bjuj> = )_'(;"‘mjwe,u

>-<v,uk>=1 . Lo

3

Since We e Hz(ﬂ) and Iy 1 n tends to zero as € approaches zero, we conclude that
H (Q)

2:-1Bjuj,dv.. o
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<Y,AP> = = aly,¢), v,y ev ,

is the infiniteasimal generator of an analytic semigroup S(t) € L(V') (see for example

PAZY (32), FRIEDMAN (16]). Furthermore, it follows from Rellich's Lemma that A has a

.
¥
‘-',
'.
n

compact resolvent operator. The restriction of A to D(A) = {¢ € VIAw e H} is the

generator of the restricted semigroup S(t) € | (H). A classical result in the 1.2 theory

for elliptic boundary value problems shows that the domain of this restriction is given by . i h
w=0a)=1{veviawesn)= #¥™a) n Hg‘m) - b

(AGMON-DOUGLIS~NIRENBERG (1], FRIEDMAN [16])). Moreover, Theorem 7.1 shows that

i
*i AP =-19, pEW . @

*
Now the trace theorem allows us to understand the boundary operators Bj in Theorem 7.1 as

bounded linear transformations from W into U = L2(39)- Hence Bj e L(U;w") and we can f'{

rewrite (7.3) into the abstract Cauchy problem Lo® 4

(7.5) 2(e) = ax(e) + 107 Bu(e), 2(0) = zg € V.

For all 2z, € v' and all uj(-) e LZ[O,T;U] the corresponding solution of (7.5) is given

by the variation-of-constants formula

-1 T :d
(7.6) z{t;zg,u) = s{t)zy + lg I; S(t-s)Bjuj(s)ds . ®

It follows from results by DaPRATO (8], BALAKRISHNAN (2], WASHBURN (45], LASIECKA (23] that s

this solution always lies in

z(5zg,u) € L2(0,758] N Co,73v") N w'e2(0,miu")
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* - o1 . 3
<L, aly,p) + lo ]an ij(x)Dvw(x)dS(x) .
L7(R)
1ne highest order term of B; is of the form 133.()‘)03:"-1-j + Dfm-1-j vwhere

2m=-1-3

r is a tangential differential

.
bj(') e C (3%) is bounded away from zero and D

operator on d{1 of order at most 2m-1-j.

(11) r ¢€ Hzm(ﬂ) and V € H:(Q) we have <y,L¢> = a(y,$).

—_— ———

This theorem shows that every classical solution of the parabolic PDE (7.1) is a weak

solution in the following sense.

DEFINITION 7.2 (weak solution)

Let uj(‘) e L2[0,T;L2(39)] be given. Then a function z(*) € L2[0,T)L2(9)] is said

to_be a weak solution of (7.1) if <¢,z(°)> e w’v2(o,T] for every ¢ € Hzm(ﬂ) n H:(Q) and

the following equation holds for almost every t € (0,T]

(7.3) a/at <W,z(t)> + <L y,z(t)> = ):“<n;w,uj(t)> ) .
L%(39)

The main step toward the existence and uniqueness result for weak solutions is the
G;rding inequality

(7.4) ate,0) > eto1Z - wighl, pev

which follows from the uniform ellipticity (7.2) (see for example FOLLAND [15, p. 309)).
This inequality in connection with standard results in semigroup theory shows that the

operator A : V * v' defined by
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under the agsumptions of Theorem 7.9. This cost functional corresponds to the bounded

output operator ( = [I 0] e [(H,H).

7.3. TWO EXAMPLES
In this section we briefly discuss two gpecific wellposed partial differential

equations in a single gpace dimension. The essential feature of these systems is that the
input and output operators are both strictly unbounded. In particular the wave equation
(7.27) has been one of the main motivating examples for the development of the theory in

section 2.

Consider the one dimensional second order hyperbolic PDE with Neumann boundary control

and point observation in the velocity described by

2 2
(a—;—(x,t) =azi—;(x,t), 0 ¢x<L, t>0 ,
2t Ix
(7.27) 2(0,t) = 0, g—: (L,t) = bu(t), £>0 ,
dz
y(t) = ¢ Ty (L,t), t>0 .
\

where u(t) € R is the input and y(t) € R is the output. This system can be understood
as a mathematical model for an undamped string with a fixed left end and the right o=1
moving freely along a vertical line, the control acting through the angle at the right
end. Solving equation (7.27) along its characteristics one can see that its input/output

relationship with zero initial state is described by the difference equation

{7.28) y(t) + y(t-2L/a; = abclu(t)=-u(t-2L/a)] .

Using this fact in connection with results in PRITCHARD-SALAMON [34] or HO~RUSSELL [19] cne

gets that system (7.27) is well posed in the state space

-79-

o —




9
4
4
!

ECR R AT R Y R I AN N A A A N - Db i 0 - Al
RIS A S - .

Iy "—" ,

PR

g = (0%,0" en'ro,) x t20,01[¢%0) = 0} .

b
b
L
L
[
b
L

More precisely, this sytem fits into the framework of section 2.2 with

z = {(e%,0") e n[o,L) x H1[O,L]|w0(0) =0, ¢'0) = 0} ,
U=Y=R

2,0
9
Ag = (®1,a2 ?

ax

—1e 1
Y, Te = b 0%, ko = cotm) .

and is well posed in the sense of Definition 2.10. System (7.27) is of particular

interest, since it can be stabilized through the static output feedback law

(7.29) u(t) = -fy(t) , fabe >0 ,

(RUSSELL (39], QUINN-RUSSELL {35]). Following Theorem 4.2, the well posedness of the

closed loop system (7,27), (7.29) requires the invertibility of the operator I + £T(t)

ii for t > 0. It follows from equation (7.28) that this operator is invertible if and only
if fabc ¥ -1.

Our second example is the one dimensional fourth order hyperbolic PDE described by

N [ 322 4 342
- (x,t) = - a - (x,t), 0 < x<L, £t>0 ,
at ax
822
z(0,t) = 0, ——E-(L,t) = 0, t>0 ,
3x
(7.30)
3z 332
— (0,t) = 0, — (L,t) = bu(t), t>0 ,
9x 3
9x
_ 3z
y(t)—c-ﬁ(L,t), t>0 |,
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where u(t) € R is the input and y(t) € R is the output. This system can be understood
as a mathematical model for an undamped beam with a clamped left end and a free right end,
with the control acting through an external force at the right end. System (7.30) can

again be reformulated within the framework of section 2.2 with

g = {(6°,0") e n?r0,1) x 210,11 )9%0) =~ $%0) = 0} ,
z = (6®,0" e n%1o,L] x 82[0,L] |9%(0) = $%0) = ¢%x) = 0, oT(0) = $'(0) = 0} ,

U=Y=R

1 34 -1 33"
a0 = (¢'-at 28, o = 7T 22
3x X

(L), Ko = c¢t (L) .

The well posedness problem for system (7.30) in the state space H has apparently not been
investigated in the open literature. However, a spectral analysis of the free system in
connection with general well posedness criteria in PRITCHARD-SALAMON (34] or HO-RUSSELL
[19) shows that the hypotheses (B2) and (B3) are satisfied. Hypothesis (B2) will no longer
be satisfied if the control acts through the second derivative. The verification of
hypothesis (B4) seems to involve some further technical difficulties and is left as a
conjecture. The feedback stabilization problem for system (7.30) has been studied by CHEN-
DELFOUR-KRALL-PAYRE [5]. They have shown via energy estimates that the system (7.30) can

be exponentially stabilized through the static output feedback law

(7.31) u(t) = fy(t) , fbe >0 .
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